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Abstract

GNU Taler is an auditable, privacy-preserving electronic cash system that allows customers
to make anonymous payments, while also protecting against money-laundering and allowing
for easy reporting and taxation. GNU Taler consists of several cryptographic protocols, each
of whose security relies on the security of various underlying cryptosystems, including public
key cryptosystems vulnerable to attacks by quantum computers. At the time of this report,
quantum computers powerful enough to run Shor’s algorithm on real-world cryptosystems
are not known to exist, but there is a consensus within the field of cryptography that pre-
quantum protocols should be updated to use post-quantum cryptography as soon as possible
to minimize the potential damage that future adversaries with a powerful quantum computer
can cause. This document catalogs the existing cryptography used in GNU Taler and evalu-
ates the threats to security and usability that a quantum attacker poses. It is the first of two
reports on the impact of quantum computers on the GNU Taler protocol.

Keywords: GNU Taler, quantum impact, post-quantum cryptography, security assump-
tions.






Chapter 1

Introduction

GNU Taler (Taler) is a new privacy-preserving electronic payment system, which provides
strong privacy guarantees for users, while also allowing for easy auditing and enforcement
of existing financial regulations. Taler makes extensive use of public key cryptography to
achieve a its security guarantees. With the widely expected advent of quantum computers
in the coming years, we wish to evaluate the potential impact that these will have on the
security goals of GNU Taler. This chapter introduces the high level issues presented by
quantum computers and also gives a brief introduction to GNU Taler.

1.1 Threats to Cryptography from Quantum Computers

Quantum computers, machines which can exploit quantum physical phenomena in algorithmic
computations, are widely expected to be built in the coming decades. A major consequence
of a future quantum computer is that it can execute Shor’s Algorithm [13], a polynomial-
time quantum algorithm that can factor large integers and compute discrete logarithms,
two hard problems that underpin the vast majority of deployed public key cryptography
and digital signatures on the Internet. A less catastrophic but still important quantum
impact on cryptography is Grover’s Algorithm [9], which can compute a secret 2n-bit AES
key in O(2") steps instead of O(22") steps, a quadratic speedup over pre-quantum search
algorithms, although the steps in Grover’s algorithm are significantly more expensive than
in the pre-quantum one and must be executed sequentially. While the impacts of Grover’s
algorithm on symmetric cryptography can be mitigated completely by doubling key lengths,
Shor’s algorithm cannot be outpaced by choosing larger parameters and requires that affected
public key schemes be completely replaced by ones that resist attacks by quantum computers.
The speedup from Grover’s algorithm improves all attacks which include a preimage search,
which is typically the best type of attack in symmetric cryptography, but it can also be used
to speed up subroutines in attacks on public-key cryptography. The latter is relevant for
attacks on post-quantum systems.

While many post-quantum public-key cryptographic schemes have been proposed, widespread
deployment is still a work in progress, and most work has focused on the simple building blocks
of public-key encryption, Key-Encapsulation Mechanisms (KEMs), and signatures. Many ad-
vanced cryptographic systems do not have matching post-quantum alternative or at least not
one matching the performance of the pre-quantum one.

For example, David Chaum outlined a one-RT'T protocol for blind signatures [4] in 1982,



which can be implemented using RSA [12], but the fastest current proposal [3] for a lattice-
based blind signature scheme requires two round trips. This means that protocols using
Chaum-style blind signatures will likely need alterations beyond a simple replacement of RSA
with a new post-quantum primitive. They’ will also be affected by the size and performance
impacts coming with lattice-based systems.

1.2 Overview of the GNU Taler Electronic Payment System

Chaum’s blind signatures were developed as a component for his untraceable payment sys-
tem [1]. In Chaum’s scheme, a bank would sign a blinded coin from a customer, rendering
the coin spendable. The customer would then unblind the signature and send the coin to
the payee as payment in a transaction. The payee would forward this coin (signature) to the
bank for verification. Because the bank signed a blinded value, it cannot match the submit-
ted signature to the one it issued originally to the customer. However, it can still verify the
unblinded signature, and credit payment to the payee who submitted it.

GNU Taler is a digital payment system that significantly builds upon Chaum’s original
system [7]. Like Chaum’s digital cash, coins in GNU Taler are untraceable to the customers
who spend them, but they allow for income transparency on the side of the payee. This pre-
vents money laundering/tax evasion by merchants who may like to accept payments without
reporting the income to tax authorities. GNU Taler supports unlinkable change, refunds, and
more recently, anonymous donations [10] and age restrictions on coins [11],

GNU Taler currently makes heavy use of public key cryptography; Almost all the pro-
tocols described in the thesis by Florian Dold [7], which introduced the Taler protocol, use
(regular and/or blind) digital signatures, and one protocol — the Refresh Protocol — uses
Diffie-Hellman key exchange [0] on elliptic curves. Because of the threat posed by quantum
computers on public key cryptosystems, this report aims to evaluate the potential impact an
attacker with a quantum computer would be able to have on GNU Taler. In Chapter 2, we
describe the various functions of public key cryptography in each of the main protocols of
GNU Taler. In Chapter 3, we provide an analysis of the impact of a quantum attacker on
these protocols.

We note that while a quantum computer can break the cryptographic schemes used in
the existing GNU Taler system, the impact of a quantum attacker is not consistently severe.
Some protocols would require an active quantum attacker who can modify the messages being
sent between honest parties in real time, while others are susceptible to attackers who store
protocol transcripts or steal an exchange’s database and attack them much later. We highlight
the potential severity of a particular quantum attacker for each protocol, and also mention
the timing requirements for an attack to be beneficial. The latter determines the level of
urgency there is for rolling out the replacements.



Chapter 2

Cryptography Used in GNU Taler

This chapter gives an overview of the main protocols of GNU Taler, focusing on the cryp-
tographic components of each protocol, and highlighting, when relevant, the relationship
between those components and the security or correctness of the protocol. Details such as
algorithms used internally by a single protocol party, or database operations, are omitted.
Interested readers may wish to refer to [7] for more detailed specifications.

2.1 Exchanges, Master Signing Key, and Denomination Keys

The value of each coin in GNU Taler is derived from a cryptographic signature applied to
it by an exchange, which blindly signs each coin with an RSA signing key associated with a
specified denomination value.! Because a denomination key’s signing key is used to create
new coins, its compromise must be avoided to prevent third parties from generating their own
valid coins. To limit potential damage from a compromised denomination key, these keys have
a pre-determined validity period and are replaced regularly by new denomination keys. The
exchange publishes announcements of its denomination keys along with the validity period
for each key, and signs these announcements with a separate, long-term Ed25519 [2] master
signing key. These signatures bind the announcement to the exchange, and allow other users
to verify that the coins signed by denomination keys indeed come from the exchange.

Because a compromised denomination signing key allows an unauthorized party to sign its
own coins, effectively printing its own money, there is an incentive to limit the validity period
of each denomination key to bound potential losses. However, a validity period that is too
short can impact the anonymity of customers, as too few customers may possess coins signed
by the same denomination key. There is thus a trade-off between longer validity periods and
better customer anonymity and shorter validity periods and increased protection from key
compromises.

2.2 Withdrawal Protocol

The Withdrawal Protocol enables a customer to transfer currency from their bank account
into their GNU Taler wallet. It consists of three phases: (1) Create Reserve, where funds are

LGNU Taler also supports the use of the Clause Blind Schnorr Signature scheme [8, 5]; however, RSA is
the default so we focus on this variant in this report.



transferred from the customer’s bank to a GNU Taler reserve at an exchange, (2) Prepare
Withdraw, where the customer generates coins (Ed25519 keypairs), along with a random
blinding factor for each coin, and (3) Execute Withdraw, where the customer sends the
blinded public key of each coin to the exchange to be signed by the exchange’s appropriate
denomination key. The exchange performs non-cryptographic operations to check that the
customer is not overdrawing coins, for example, but we ignore these details here.

The Withdrawal Protocol uses both Ed25519 signatures and blind Full Domain Hash
(FDH)-RSA signatures in several ways. During the Create Reserve phase, the customer gen-
erates an Kd25519 keypair that identifies a new reserve at the exchange. The customer sends
the public key for this reserve to the exchange with their bank transfer. When the customer
executes a withdrawal for that reserve, they sign their request with the corresponding private
key, proving that the coin request is coming from the owner of the reserve.

During the Execute Withdraw phase, the customer hashes and blinds the public key
portion of each freshly generated coin. The exchange signs this blinded value using the
appropriate denomination private key, conferring to the coin its value and authenticity.

While each signed GNU Taler coin that the customer obtains from the exchange is itself
the public key of an Ed25519 keypair, this key is not used to perform any cryptographic
operations in the Withdrawal Protocol itself.

2.3 Payment: Spend Protocol and Deposit Protocol

Payment consists of two protocols performed in succession: (1) the Spend Protocol, where
the customer and merchant agree on a payment contract, and the customer “spends” coins
by signing them to indicate permission for the merchant to deposit them at the exchange,
and (2) the Deposit Protocol, where the merchant forwards the spent coins to the exchange
and receives proof of deposit for those coins.

Both of these protocols exclusively make use of Ed25519 signatures for cryptographic
operations. In the Spend Protocol, the customer makes use of two different Ed25519 signing
keys. One of them is an Ed25519 keypair which is newly created by the customer, who sends
the public key to merchant; this public key is then included in the transaction offer from the
merchant. The merchant uses their long-term Ed25519 key to sign the transaction offer. The
customer keeps the private key of their fresh key pair to be able to later prove to a third party
that they received the offer from the merchant. The customer also has the Ed25519 private
key(s) belonging to the coin(s) spent during the transaction. Each coin’s private key is used
to sign a tuple that binds the coin to the transaction offer and the merchant. This signature
serves as a proof that the customer gives permission to the merchant to deposit that coin into
the merchant’s bank account.

In the deposit protocol, the signed coins (permissions of deposit) are sent to the exchange,
where the exchange checks for coin validity and double spending. If the coins have a valid
denomination signature from the exchange, and the signature on the deposit permission ver-
ifies against the coin’s public key, then the exchange also signs the deposit permission as a
certificate of deposit and returns this to the merchant.



2.4 Refresh and Linking Protocol

The Refresh Protocol allows customers to exchange a dirty coin, that is coins which were
typically either (1) partially spent, (2) nearly expired, (3) potentially disclosed in an aborted
transaction, or (4) previously refreshed into a subsequently revoked denomination, for new or
fresh coins. The fresh coins are then unlinkable to the dirty coin by anyone other than the
customer. In order to protect against the potential loophole of letting someone else obtain
the refreshed coins, effectively an untraceable peer-to-peer payment, the Linking Protocol
makes it possible for the owner of the dirty coins to re-obtain the fresh coins, meaning that
the fresh coins can be shared, but cannot completely change hands to a new owner. In terms
of the cryptography used, the Refresh Protocol is perhaps the most complicated, as it takes
advantage of the coincidence that Ed25519 keys can also be used to perform Curve25519 [1]
Diffie-Hellman key exchange.

The Refresh Protocol is an interactive protocol between the customer and the exchange.
Given a dirty coin (an Ed25519/Curve25519 keypair), the customer first generates k = 3
random seeds, each of which is fed through HKDF to create a new Curve25519 keypair. The
customer then computes the shared Diffie-Hellman secret between each private key of these
new keys and the public key of the dirty coin. Each shared secret is fed again through HKDF
to create a new 256-bit value, which becomes a private key of a new Ed25519 keypair. The
shared secret is also mapped to an element of Z%;, where IV is the modulus of the denomination
key used to sign the fresh coin. These new Ed25519 keypairs are planchets for new coins from
the exchange, and each is paired with a blinding factor as in the Withdrawal Protocol, except
that in this case the blinding factor is not random, but is instead deterministically derived
from the Diffie-Hellman secret.

The customer creates a hashed commitment of the k£ Curve25519 public keys and k
planchets, signs this commitment with the private key of the dirty coin, and sends it to
the exchange. The exchange verifies the signature and then picks a random challenge in-
dex v, and sends this to the customer. The customer then reveals the seeds for all the new
Curve25519 keys it generated, except for the one indexed by . They also send the public key
of the Curve25519 key indexed by « and the corresponding planchet. Because the planchets
and blinding factors are generated deterministically from the random seeds, the exchange can
recompute all the Curve25519 keys and planchets, except for v, and can also recompute the
commitment sent by the customer. If the recomputed commitment matches what was sent
by the customer, the exchange assumes that the new planchet, was also generated honestly
and signs it, yielding a fresh coin. The exchange stores the challenge Curve25519 and blinded
planchet in its database.

In the Linking Protocol, a customer can request the transfer Curve25519 public key and
signed planchet values from the exchange by providing the original dirty coin public key.
Because the customer knows the private key of the original coin, it can perform the Curve25519
operations using the private key of the old coin and the public transfer key used to derive the
keys for the fresh coin, obtaining the blinding factor for planchet and using that to compute
the signature over the fresh coin and its private key.



2.5 Refunds

The Refund Protocol occurs between the merchant, exchange, and the customer, and only
makes use of Ed25519 signatures. The customer requests a refund from the merchant. If
granted, the merchant signs a refund message that includes the transaction details with its
long-term Ed25519 key and send this to the exchange. The exchange verifies the signature,
updates its database to make the customer’s coins spendable (and thus also refreshable) again,
and signs a confirmation message for the refund with its long term signing key. The exchange
sends this message to the merchant, who can then forward it to the client.



Chapter 3

Impact of Quantum Computers on
GNU Taler

Shor’s Algorithm makes it possible for someone with a quantum computer to factor large
integers, like those used as RSA moduli, and compute discrete logarithms, like those used in
Ed25519 and Curve25519, in polynomial time. The protocols in GNU Taler exclusively use
factoring- and discrete logarithm-based public key cryptography. This means that the cryp-
tographic protocols in GNU Taler are very susceptible to attacks with a quantum computer.

There are mitigating factors that depend on implementation details, however. For exam-
ple, computing the discrete logarithm of an Ed25519 public key requires that the actor with
a quantum computer has access to this public key. If the public key is not visible to the
attacker, because the attacker does not have access to traffic on the network at the moment
required to use the information effectively, then this may in practice provide some protection.
However, for the purpose of this report, we assume that any quantum attacker is also in
control of the network, and can actively view and alter messages between participants in real
time.

We also ignore economic considerations for the most part. Any attack that is more
expensive to execute than the monetary value it produces is unlikely to occur in the real
world. Still, attack costs change over time, and so in order not to underestimate the likelihood
of a possible attack, we assume here that the cost to an attacker of breaking pre-quantum
schemes with a quantum computer is essentially zero. That is, an economic analysis of attacks
is outside the scope of this report.

3.1 Exchange Master Signing Key

Exchanges use a long-term Ed25519 master signing key to sign their published denomination
keys. A quantum attacker can compute the discrete logarithm of the master signing key’s
public key, allowing them to forge signatures from that key on its own sets of denomination
keys. The attacker would then distribute these phony denomination keys to customers and
sign coins with these phony keys during the Withdrawal Protocol. The customer will accept
these signed coins because they are signed with denomination keys which in turn have signa-
tures that verify against the exchange’s master signing key. Each set of phony denomination
keys could even be targeted to a specific customer, so every customer would potentially be
uniquely identified by the phony public key used during the withdrawal protocol. When



the customer then spends these coins and the merchant deposits them, the deposit will fail,
because the denomination key which signed the deposited coins is not known to the actual
exchange. However, by observing deposits at the exchange, the attacker can see which cus-
tomer participated in the transaction by matching the denomination keys used for the deposit
protocol with the customer(s) who withdrew coins against that key.

This attack requires an active attacker with a quantum computer and is detectable by
the customer when they try to spend their coins and the honest exchange rejects them. The
attacker also needs to actively impersonate the exchange and convince customers to use a set
of phony denomination keys. It is also worth noting that there are less detectable ways to de-
anonymize customers with a quantum computer, such as by attacking the Refresh Protocol.
Because this vulnerability requires an active, live attack, we consider this a low severity
vulnerability while quantum computers are not presumed to exist.

3.2 Exchange Denomination Keys

As RSA signing keys, all denomination keys are currently vulnerable to Shor’s Algorithm. A
quantum adversary can recover an exchange’s denomination key signing keys and sign new
coins for themself. Under normal circumstances, exchanges can automatically detect a de-
nomination key compromise at the point that the number of deposits for a given denomination
exceeds the total number of coins issued with that denomination key. If compromises are rare
events, this naturally limits the financial losses of the exchange to a hopefully acceptable
level. A quantum attacker can compromise every denomination key, however, meaning that
exchanges may be unable to absorb the losses from these forged coins.

This vulnerability does not require the quantum attacker to interfere in any protocols,
but does require the attacker to have a quantum computer and finish carrying out the attack
during the validity period of the denomination keys it is attacking, as coins forged by an
attacker with a revoked or expired key would not be spendable. Due to the requirement for
a quantum computer at the time of the attack, this vulnerability is not currently considered
particularly severe. As soon as a quantum computer exists that can execute this attack,
however, this will have a severe impact on the GNU Taler system.

3.3 Withdrawal Protocol

In the Create Reserve phase of the Withdrawal Protocol, a customer generates an Ed25519
keypair which identifies a reserve with the exchange. The public key of this reserve keypair
is sent along with the bank transfer from the customer’s bank to the exchange. Because the
attacker is able to compute the the discrete logarithm of this public key, they are able to forge
a signature on their own blinded planchets that will verify under the customer’s reserve public
key. The attacker then simply performs the Prepare Withdraw and Execute Withdraw steps
of the protocol with the exchange before the customer is able to do so, forging signatures on
the blinded coins. The exchange will check that these signatures verify, and then return the
signed coins to the attacker, and deducting from the customer’s reserve balance accordingly.

This attack requires a live quantum attacker who can observe core banking transactions
to learn the public key, can first break the discrete logarithm of the Ed25519 verification key
and then execute the Withdrawal Protocol and still be faster than the legitimate customer
(who is likely actively waiting for the exchange to notify them that their transaction has



arrived). The net effect is to steal coins belonging to a legitimate customer, who would likely
detect this when they try to execute the Withdrawal Protocol with the exchange and learn
their reserve balance, which they just made a transfer to create, is zero. Due to the limited
damage to a customer/the exchange from this particular attack, and the narrow time window
during which the attacker must execute it, we consider the impact of this attack to be low to
medium severity.

3.4 Payment: Spend Protocol and Deposit Protocol

Each of the signatures in the payment protocols can be forged by an attacker with a quantum
computer who can observe the communication between a customer and merchant on the
network. If the merchant’s signing key is targeted, the attacker would being able to generate
fake transaction offers originating from that merchant. If the customer’s ownership identifier
key is targeted, the attacker would be able to generate a proof that they are the true recipient
of the transaction offer. If the coin Ed25519 public keys are targeted, then the attacker could
forge signatures using those coins’ private keys. Also, because the client sends the merchant
the exchange’s signatures on those coins, the attacker can create fake deposit permissions for
those coins.

There are several possible attacks originating from these compromises, each with different
constraints. The attacker could try to spend the customer’s coins themself, but this requires
that they run Shor’s algorithm on coins’ Ed25519 public keys, use the corresponding private
keys in another complete instance of the Spend Protocol, and complete that before the legit-
imate merchant has deposited the coins. This race is probably unwinnable by the attacker
due to the short time window and many extra computations required. The attacker could
instead try to deposit the coins directly with the exchange, posing as a merchant. This is
also a (probably unwinnable) race against the legitimate merchant to deposit the coins, but
requires slightly fewer steps for the attacker.

However, the proof of deposit signatures from the exchange in the Deposit Protocol are
also forgeable, as the exchange uses a publicly announced Ed25519 keypair to sign them. An
attacker who sees a customer’s coin Ed25519 public keys (and accompanying denomination
key signatures) can therefore forge an entire Spend/Deposit Protocol transcript for these
coins, including forged deposit permissions from the customer and a forged proof of deposit
from the exchange. This does not require the attacker to perform the attack before the
original merchant has deposited the coins. It also does not require that all the coins come
from a single transaction. Because the proof of deposit affirms, among other things, that
the coins have not been double spent, the attacker could show this transcript to a judge and
claim a right to the deposited amount, even if they do so after the exchange has marked the
coins spent. Of course, the attack would be detected, because the exchange would see the
same coins being spent in both transcripts, but a judge may still force the exchange to pay
the attacker.

Due to the extremely short time window for the case where the attacker is racing to
spend/deposit coins before a merchant engaging in a legitimate transaction has finished de-
positing them, we consider this attack to have a very low-severity impact on the system. For
the case where an attacker collects coin public keys after they have been deposited, forges
proofs of deposit for those coins, and then tries to legally enforce those deposits, we consider
this to have low-to-medium-severity impact on the system. The severity is increased due to



the larger window of time for the attacker to collect and attack coins and a possibility of suc-
cessfully enforcing payment. This attack’s severity is mitigated, however, by its detectability
by the exchange and by the fact that the attacker would likely be identified if they go to
court.

3.5 Refresh and Linking Protocol

During the commitment phase of the Refresh Protocol, the customer sends their hashed
commitment to the exchange along with the dirty coin’s public key, the relevant denomination
keys, and the unblinded signature on the dirty coin. An attacker with a quantum computer
observing this message would see the dirty coin’s public key and be able to compute its discrete
logarithm. This allows an attacker to forge signatures with that coin, allowing the attacker
to spend the residual value of the coin. The attacker learns nothing about the committed
values at this point, because these are the output of a cryptographic hash.

Likewise, in the reveal phase, the customer reveals the public part of the challenge
Curve25519 transfer key, whose discrete log can also be computed by an eavesdropping quan-
tum attacker. Thus the attacker can compute the Diffie-Hellman secret in either direction,
giving them the information they need to compute the refreshed coin and its blinding factor.
If the attacker then obtains the blinded signature, they can easily unblind it and obtain the
same new, spendable coin as the customer.

An important observation is that, because the blinding factor for refreshed coins is deter-
ministic for a given transfer Curve25519 key, the resulting refreshed coin is not information-
theoretically secure with respect to anonymity. In the Withdrawal Protocol, an exchange is
unable to link a blinded coin withdrawn by a customer with its unblinded version when the
customer spends it, even if the exchange has unlimited computing power. In the Refresh
Protocol, an exchange (or eavesdropper) without a quantum computer could link a dirty
coin with its refreshed derivative coin in exponential time, while an attacker with a quantum
computer could do so in polynomial time. The original blinding factor from the initial With-
drawal Protocol instance would still remain unknown, of course, so this would not completely
de-anonymize the customer. However, it would allow an attacker to connect two or more
different payments of the customer to each other, which may be sufficient to uniquely identify
them.

The Refresh Protocol also is rather unusual for taking advantage of a coin’s ability to be
used both for Curve25519 elliptic curve Diffie-Hellman and for Ed25519 signatures. Among
the currently proposed post-quantum signature schemes, none innately has this dual-use
property. This dual-use requirement of the Refresh Protocol thus poses a special challenge
for replacing pre-quantum cryptography in GNU Taler with post-quantum schemes.

The impact of a quantum computer on the Linking protocol is similar to the impact on
the Refresh Protocol. In the Linking Protocol, the exchange provides the customer with
the linking record for a dirty coin Cl()o), which includes CISO), the transfer Curve25519 public
key T, and the signature on a derived blinded coin. A quantum attacker can compute
the discrete logarithm of either the original coin public key or the transfer Curve25519 key,
compute the Diffie-Hellman secret to re-obtain the blinding factor, and unblind the signed
coin to recompute the customer’s new refreshed coin. The attacker could repeat this process
for all the linking records it is able to access.

The impact of a quantum attacker trying to obtain refreshed coins to spend them is limited



by the need to spend these coins before the legitimate owner does. We consider the impact of
a quantum attack on the Refresh protocol to be moderate with respect to fund conservation.

However, recomputing refreshed coins has a much more serious impact on anonymity, and
for this there is no temporal limit. An attacker who obtains the exchange database much later
will be able to see all the instances of the refresh protocol, be able to compute the refreshed
coins from any protocol instance, and see when they were spent elsewhere in the database.
Identifying the customer in any of those transactions would thus break their anonymity for
all transactions where a linked coin was used. Customers may have an interest in preserving
the anonymity of transactions now for a long time into the future. Revealing a donation to
a contentious organization, for example, may create problems for the customer, even if it is
revealed many years later. Due to the ability for an attacker to store now and decrypt later,
and because of the potentially serious damage that de-anonymizing transactions may have
years into the future, we consider this to be a severe vulnerability in GNU Taler to a quantum
attack that requires fixing long before quantum computers arrive.

3.6 Refunds

As Ed25519 signatures can be forged by a quantum attacker, the refund instruction from the
merchant to the exchange can also be forged by a third party (the customer, say), to initiate
a refund on coins previously spent by a customer. This would have the effect of allowing a
customer to double (or more often) spend coins, as they could make purchases, generate fake
refund instructions to the exchange, and then reuse the coins. While there is no theoretical
limit to the number of times this could occur, this has a side effect of updating the exchange’s
database, and would thus likely be detectable by an auditor. Given that there are other, less
detectable ways for a quantum attacker to forge their own coins, we consider this attack to
have a low-to-medium impact on GNU Taler.
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