
Anastasis
Password-less key recovery via multi-factor

multi-party authentication

Bachelor thesis

Field of Studies: Computer science bachelor, IT-Security
Authors: Dominik Samuel Meister, Dennis Neufeld
Supervisor: Prof. Dr. Christian Grothoff
Expert: Pierre-Yves Voirol
Date: June 12, 2020

Abstract

This thesis describes the design and implementation of Anastasis, a Free Soft-
ware key escrow system that offers a practical way for ordinary users to bridge the
conflicting requirements of keeping key material confidential and also available.

Anastasis fills this gap by providing a solution for secure recovery of secret keys,
which works without passwords or other key material. This is achieved by split-
ting the key material across multiple independent Anastasis service providers, and
enabling users to recover their master key by authenticating with each provider.
Our protocol ensures that — without prior knowledge — the service providers learn
nothing from the protocol except the minimum amount of data required to authenti-
cate the user. Even that information is only disclosed at the time of authentication.
Anastasis offers users control over the set of escrow providers, selection of authenti-
cation methods and desired policies for key recovery.

Many cryptographic protocols rely on keys being both kept secret, but also avail-
able for data processing. This thesis will highlight application domains for Anastasis
and explore how to build a business around Anastasis.

i

Acknowledgements
We wish to thank Christian Grothoff for the help and support he has provided throughout
our work on Anastasis. He helped us resolve bugs and provided us feedback for the
development. Additionally he helped us to edit our bachelor thesis documents.
We want to thank Pierre-Yves Voirol for agreeing to serve as an expert for the thesis. We
also wish to thank the GNU Taler team, Vaishnavi Mohan, Nana Karlstetter and Leon
Schumacher which supported us writing and presenting a funding proposal. Additionally,
we want to thank Florian Dold which gave us feedback for our REST API documentation.
We also want to thank Emmanuel Benoist for providing us the paper for MIDATA.

ii

Contents
1. Introduction 2

1.1. Principles . 2
1.2. Approach . 3
1.3. Use cases . 4

1.3.1. Encrypted email communication 4
1.3.2. Digital currencies and payment solutions 5
1.3.3. Password managers . 6
1.3.4. Hard drive encryption . 6

2. Project management 7

3. Related work 8
3.1. Cryptographic primitives . 8

3.1.1. Pseudo-randomness . 8
3.1.2. Hash function . 8
3.1.3. HMAC . 9
3.1.4. HKDF . 9
3.1.5. Argon2 . 9

3.2. Secret sharing . 10
3.2.1. Shamir’s secret sharing . 10
3.2.2. Verifiable secret sharing . 11
3.2.3. Distributed key generation . 11

3.3. Authentication . 11
3.3.1. Password authentication . 12
3.3.2. Secure question . 12
3.3.3. SMS authentication . 13
3.3.4. E-mail authentication . 13
3.3.5. VideoIdent . 14
3.3.6. PostIdent . 14
3.3.7. Biometric authentication . 14

3.4. Existing solutions for key recovery . 14
3.4.1. Coinbase . 15
3.4.2. MIDATA . 15

4. Design 16
4.1. Overview . 16
4.2. Adversary model . 19
4.3. Encryption of the core secret . 20
4.4. The recovery document . 20
4.5. Identity-derived encryption . 21
4.6. Authenticity of recovery documents . 24
4.7. Account signatures . 25

iii

4.8. Authenticity of truth . 26
4.9. Availability considerations . 26

5. Implementation 27
5.1. System architecture . 28
5.2. Server architecture . 29

5.2.1. Database . 30
5.2.2. Authentication methods . 31

5.3. Client architecture . 32
5.3.1. Crypto API . 33
5.3.2. Client API . 35
5.3.3. Service API . 39

5.4. Application flow . 40
5.4.1. Secret splitting . 40
5.4.2. Secret recovery . 42

5.5. Client Application Command Line Interface (CLI) 43
5.5.1. Anastasis splitter . 43
5.5.2. Anastasis assembler . 45

5.6. Libraries . 46
5.6.1. GNU Taler . 46
5.6.2. PostgreSQL . 47
5.6.3. Libcurl . 47
5.6.4. GNU Libmicrohttpd . 47

5.7. Testing . 47

6. Business model 49
6.1. Executive summary . 49
6.2. Market review and innovation potential 49
6.3. Business model canvas . 50

6.3.1. Key partners . 50
6.3.2. Key activities . 51
6.3.3. Key resources . 51
6.3.4. Value propositions . 51
6.3.5. Customer relationships . 51
6.3.6. Customer segments . 52
6.3.7. Cost structure . 52
6.3.8. Revenue streams . 52

6.4. Project plan . 52

7. Conclusion and outlook 54

A. REST API documentation 55

B. Work journal 65

iv

Glossary 74

References 75

List of Figures
1. System architecture . 3
2. Derivation of a user identifier . 4
3. Master key in Bitcoin wallets . 5
4. Anasasis project plan . 7
5. Legend of Figure 6 . 16
6. Secrets used in Anastasis . 17
7. Key generation for signing of encrypted “Truth” data in Anastasis 19
8. Use of Argon2 to derive user attributes . 22
9. Secret split process . 27
10. System design overview . 28
11. Anastasis server architecture . 29
12. Anastasis database schema . 30
13. Anastasis client architecture . 32
14. Secret split process . 40
15. Secret recovery process . 42
16. Business project plan . 53

1

1. Introduction
Keys are used to encrypt high sensitive personal data and therefore they must be kept
safely. Secure storage of private keys is known to be a difficult problem — especially
for end-users with limited skills in system administration and insufficiently redundant
hardware. A central objective for any solution is that only the legitimated owner of a
key must have the possibility to recover a lost key.

But how can one create a confidential backup of a key? It certainly makes no sense to
encrypt a key with a different password and then use the result as a backup. After all,
this merely shifts the problem from the original key to the password, which is basically
yet another key. So simply encrypting the key is not helpful. But without encryption,
any copy of a key increases availability, but also the risk of the key’s confidentiality being
compromised.

Most people have difficulties memorizing a high-entropy passphrase. Hence, existing
key management “solutions” often reduce the problem of memorizing one or more high-
entropy passphrases or keys to memorizing a single low-entropy passphrase. This is not
a good solution, as the low-entropy passphrase undermines security.

In this thesis, we describe a software solution for the described problem using secret
splitting. We call our solution “Anastasis”, which is a medical term for the prognosis of
full recovery. We will call the information that Anastasis allows the user to recover their
core secret.

1.1. Principles
For Anastasis we have following design objectives, in order of importance:

1. Anastasis must be Free Software1. Everyone must have the right to run the pro-
gram, study the source code, make modifications and share their modifications
with others.

2. Anastasis must not rely on the trustworthiness of individual providers. It must
be possible to use Anastasis safely, even if a subset of the providers is malicious.
Anastasis must minimize the amount of information exposed to providers and the
network.

3. Anastasis must put the user in control: They get to decide which providers to use,
and which combinations of authentication steps will be required to restore their
core secret. The core secret always remains exclusively under the user’s control,
even during recovery.

4. Anastasis must be economical viable to operate. This implies usability and effi-
ciency of the system.

5. Anastasis must support a diverse range of use cases.

1https://www.fsf.org/

2

https://www.fsf.org/

1.2. Approach
Secret sharing and recovery

Our approach to solve the problem of key recovery is to let the user split their core secret
across multiple escrow providers (see Figure 1). To recover their core secret, the user
has to authorize key the recovery, usually by passing an authentication check which they
configured for the respective provider.

After successful authentication the user receives the secret shares and is able to re-
assemble their core secret locally on their computer.

Figure 1: System architecture

Derive user identifier

Every person has some hard to guess, semi-private and unforgettable inherent attributes
such as name and passport number, social security number or AHV [1] number (in
Switzerland). We use those attributes to improve the security and privacy provided
by Anastasis. Basically, these attributes serve as weak key material, raising the bar
for attackers without the availability disadvantages of passphrases — which users may
forget. Anastasis derives a “user identifier” from such a set of unforgettable attributes
(see Figure 2).

3

Figure 2: Derivation of a user identifier

Encrypt and encrypt and encrypt

Anastasis uses several layers of encryption. First, the user’s core secret is encrypted
with a master key. The master key is encrypted with various policy keys. The policy
keys are derived from various secrets which are encrypted and distributed across various
providers together with information about the desired recovery authorization procedure.
This last encryption is done based on keys derived from the user identity. These many
layers of encryption are designed to distribute trust and to minimize or delay information
disclosure.

Private payments are integrated

The Anastasis protocol includes provisions for privacy-preserving electronic payments to
the service providers, as well as resource limitations to protect service providers against
resource exhaustion attacks. This ensures that it should be possible to operate the
service commercially.

1.3. Use cases
There are several applications which are in need of a key escrow system like Anastasis.
Some of them shall be introduced in this section.

1.3.1. Encrypted email communication

For email encryption using Pretty Good Privacy (PGP) [2] users need a private key
which is typically stored on the device running PGP. PGP uses a “Web of trust” to
establish the authenticity of keys.

Pretty Easy privacy (short p≡p) is “a cyber security solution which protects the confi-
dentiality and reliability of communications for citizens, for public offices and for enter-
prises” [3]. It secures communication via email by providing end-to-end encryption sim-
ilar to PGP. A major difference is that p≡p uses opportunistic encryption and so-called

4

trustwords to establish authenticity to avoid usability and privacy problems associated
with the “Web of trust” [4].

The impact of losing control over the private key is similar in both systems:

• If the private key becomes unavailable, all emails which were encrypted to that
key become unreadable. Furthermore, the user would likely need to rebuild their
“Web of trust”.

• If the private key is disclosed to an adversary, they might be able to decrypt
that user’s encrypted emails – which may go back years and could include highly
sensitive information. An adversary could also use the private key to send crypto-
graphically signed emails pretending to be the user.

1.3.2. Digital currencies and payment solutions

Another application relying on a core secret are cryptocurrencies like Bitcoin. Each user
of Bitcoin needs an electronic wallet which stores and protects the private keys of the
user. Those private keys legitimate its owners to spend the bitcoins corresponding to
the keys. [5]

Loosing Bitcoin wallet keys means losing all of the corresponding Bitcoins. The reader
may be familiar with stories from the mass media about people who claim to have lost
their key to their electronic wallet and therefore huge sums of cryptocurrency [6]. Backup
systems are essential to avoid such cases.

The following graphic illustrates the keys used in Bitcoin wallets. In this case, the
core secret Anastasis would store is the “master key” m:

Figure 3: Master key in Bitcoin wallets (from [7])

5

GNU Taler2 is a new electronic instant payment system for privacy-friendly online
transactions. The GNU Taler digital wallets are storing electronic coins, and backups
are protected with a key. Loosing the backup key means losing all the money stored in
the wallet, as well as the transaction history kept in the wallet.

The European Central Bank (ECB) informally informed Taler Systems SA about the
requirement for electronic wallets denominated in Euros to support password-less data
recovery to ensure users would not loose their electronic funds if their device were to be
damaged or lost.

This was the key impulse which motivated us to create Anastasis, with the goal of
enabling recovery of GNU Taler’s backup keys via Anastasis.

1.3.3. Password managers

To avoid using low-entropy passwords and password reuse, some people use software
password managers like KeePass3. Such password managers relieve you of the burden
of remembering many passwords and in most cases allow the generation of high-entropy
passwords.

The user only has to remember the password for the password manager. However, as
discussed before, this is still a major problem:

• On the one hand, users could use an insecure, easy to remember password. In this
case, an adversary gaining control over the password manager’s database could
break into all systems secured by keys managed by the password manager.

• On the other hand, users could use a complex, high-entropy passphrase. However,
if that passphrase is forgotten, users face the loss of all passwords and thus also
all online services that the password manager controlled for them.

Anastasis can be used to enable recovery of strong passphrases, such as those that
should be used to secure password managers.

1.3.4. Hard drive encryption

Data at rest is often protected using (full) drive encryption, for example using software
like LUKS4. For encryption and decryption of the drive a combination of key files,
passphrases and Trusted Platform Modules (TPMs) [8] are used.

Anastasis can be used to backup and restore such key files or passphrases.

2https://taler.net/de/
3https://keepass.info/
4https://guardianproject.info/archive/luks/

6

https://taler.net/de/
https://keepass.info/
https://guardianproject.info/archive/luks/

2. Project management
This section describes the project planing of Anastasis. A detailed reflection on the work
on Anastasis is in the work journal in the appendix.

Figure 4 shows our original project plan for implementing Anastasis and writing our
Bachelor’s thesis.

Figure 4: Anasasis project plan

We were able to write our thesis roughly according to our original project plan. The
software development took a bit longer, as we had to relearn certain aspects of the C
language and understand many APIs used by the overall system. Because of this, we
cut the implementation of the complex authentication method from the plan.

On the flip side, due to the interest of many groups and businesses in Anastasis,
we invested more time than expected into the business part, including the pursuit for
external funding, which we hope will enable us to launch a successful business with
Anastasis.

7

3. Related work
This chapter explains some important cryptographic functions and which are used in
Anastasis or related to our work. We also describe issues with existing solutions in this
domain.

3.1. Cryptographic primitives
3.1.1. Pseudo-randomness

A pseudo random generator (PRG) is an algorithm producing an infinite sequence of
bits for which there is no efficient algorithm to distinguish it from a truly random se-
quence [9]. The algorithm “takes as input a short, perfectly random seed” [9] which
determines the output value.

A pseudo random function (PRF) is a deterministic function which output is finite
and indistinguishable from a true random function. [10] PRFs can be constructed using
PRGs. [11]

3.1.2. Hash function

Hash functions ”compress a string of arbitrary length to a string of fixed length [...]” [12].
The output of a hash function often is called a ”hash”. Hash functions in general should
be very fast to compute. Cryptographic hash functions need to fulfil additional security
requirements which are

• (first) pre-image resistance,

• second pre-image resistance,

• collision resistance,

• pseudo randomness, and the

• avalanche effect.

Pre-image resistance, also called the “one way property”, means that for a given hash
function H and a hash value H(x), it is computationally infeasible to find x. [13] For
example, since in Anastasis we derive the key to encrypt the personal details required for
user authentication (e.g. the mobile phone number for authentication via SMS) using
functions based on hash functions (see HKDF), it is very important that you cannot
derive the corresponding input values from the key.

The second pre-image resistance is described by following: For a given hash function
H and a hash value H(x), it is computationally infeasible to find x and x′ such that
H(x) =H(x′) and x , x′. [13] In Anastasis hash functions also are involved in signing our
so called recovery document. Hence an attacker should not be able to create a malicious
recovery document with the same hash value as the original one.

8

The definition of collision resistance slightly differs from the second pre-image resis-
tance: For a given hash function H , it is computationally infeasible to find a pair x,y
such that H(x) = H(y) [13]. Anastasis does not rely upon collision resistance in its use
of hash functions.

A cryptographic hash function should also behave as a pseudo random function. This
means that although a hash function is purely deterministic, the output must not be
predictable.

The avalanche effect describes the property of an algorithm that causes a significant
change of the output value, usually a bit flipping of more than half the output is desired,
if the input is changed slightly (for example, flipping a single bit). [14] The more bits
are flipping in the output value the higher the entropy of the randomness of the hash
function.

There are many applications for cryptographic hash functions. For example, you
can store the hash value of a passphrase instead of the passphrase itself in a computer
to protect the passphrase. Another important application is verification of message
integrity: Before and after transmission of a message one can calculate the hash values
of it and compare hashes later to determine if the message changed during transmission.

In Anastasis we use SHA-512 [15] for fast hash functions.

3.1.3. HMAC

When it comes to integrity of messages during communication of two parties over an
insecure channel Keyed-Hash Message Authentication Codes (HMAC) are used as check
values. An HMAC function is based on a hash function and takes two arguments, a key
K and a message M:
HMACK (M) = H(K ⊕ opad,H(K ⊕ ipad,M)) with ”ipad” and ”opad” being constants

which fill up the key K to the blocksize of the hash function [16]. The blocksize of a
modern hash function like SHA-512 is 64 bytes.

3.1.4. HKDF

A HKDF is a key derivation function (KDF) based on HMAC. A KDF “is a basic and
essential component of cryptographic systems: Its goal is to take a source of initial key-
ing material, usually containing some good amount of randomness, but not distributed
uniformly or for which an attacker has some partial knowledge, and derive from it one
or more cryptographically strong secret keys” [17].

Anastasis uses HKDFs based on SHA-512 to derive symmetric keys for encryption.

3.1.5. Argon2

Hash functions like SHA-512 are designed to be very fast. Therefor passwords being
stored using this kind of hash are vulnerable to dictionary attacks with new hardware
architectures like FPGAs [18] and dedicated ASIC [19] modules. But those architectures
“experience difficulties when operating on large amount of memory” [20].

9

In contrast to standard hash functions there are functions designed to be memory-hard.
Argon2 is such a memory-hard function that won the Password Hashing Competition in
2015. It minimizes time-memory tradeoff [21] and thus maximizes the costs to implement
an ASIC for given CPU computing time [20]. Aside from the fact that Argon2 makes
dictionary attacks much harder, Argon2 can be used for another feature too: Memory-
hard schemes like Argon2 are very useful for key derivation from low-entropy sources [20].

Argon2 is used in Anastasis to derive an identifier for the user from the user’s at-
tributes, which serve as low-entropy inputs.

3.2. Secret sharing
Secret splitting, also known as secret sharing, is a technique for distributing a secret
amongst multiple recipients. This is achieved by assigning a share of the secret to each
recipient. By combining a sufficient number of those shares, it is possible to reconstruct
the secret. In a secret sharing theme the recipients of a share often are called players.
The figure who gives a share of the secret to the players is called dealer.

In Anastasis the user is the trusted dealer who splits the secret and also reconstructs
it.

3.2.1. Shamir’s secret sharing

The algorithm “Shamir’s secret sharing” is probably the most well known secret sharing
scheme. It “divide[s] data D into n pieces in such a way that D is easily reconstructible
from any k pieces, but even complete knowledge of k − 1 pieces reveals absolutely no
information about D” [22].

Shamir’s simple secret sharing scheme has two key limitations. First, it requires a
trusted dealer who initially generates the secret to be distributed, and second the shares
are not verifiable during reconstruction. Therefore, malicious shareholders could submit
corrupt shares to prevent the system from reconstructing the secret — without these
corrupt shareholders being detectable as malicious. Furthermore, the dealer distributing
the shares could be corrupt and distribute some inconsistent shares to the others. Also,
in some scenarios the dealer cannot be trusted with the knowledge of the original core
secret.

Additionally, Shamir’s secret sharing is inflexible because it is a simple k-out-of-n
threshold scheme. While this makes the scheme reasonably efficient even for big values
of n, efficiency with respect to a large number of escrow providers and authorization pro-
cedures is not important for Anastasis: it is already difficult to conceive users providing
more than a handful of authentication methods (Section 3.3 describes common choices.)

For Anastasis, we thus decided to opt for more flexible approach that allows complex
policies for recovery authorization, instead of only k-out-of-n. Each user of Anastasis
is also able to decide which combinations of players, which in case of Anastasis are the
escrow providers, shall be permitted.

10

3.2.2. Verifiable secret sharing

Verifiability can be achieved by using so called commitment schemes like the Pederson
commitment. It allows “to distribute a secret to n persons such that each person can
verify that he has received correct information about the secret without talking with
other persons” [23]. In his paper “A Practical Scheme for Non-interactive Verifiable
Secret Sharing” [24], Paul Feldman combines the two schemes Shamir Secret Sharing
and Pederson commitment. His algorithm for verifiable secret sharing (VSS), allows
each recipient to verify the correctness of their share. But like in the Shamir Secret
Sharing scheme, the dealer in the VSS scheme also can’t be trusted with the knowledge
of the original core secret.

Because in Anastasis each user can act as their own trusted dealer, the shares must
not be verified and therefore Anastasis do not need any form of VSS.

3.2.3. Distributed key generation

Distributed key generation (DKG) algorithms solve the problem of needing a trustworthy
dealer by instead relying on a threshold of honest persons for key generation. Contrary to
the above-mentioned schemes, in distributed key generation algorithms every participant
is involved in key generation. The Pederson DKG is such “a secret sharing scheme
without a mutually trusted authority” [25]. Basically, this DKG works as follows: First,
each involved party generates a pre-secret and distributes it to all parties using the
verifiable secret sharing scheme of Feldman. Afterwards, each party recombines the
received shares, including its own pre-secret, to a share of the main secret. The main
secret can be reconstructed by summing up each recombination of the shared pre-secrets.

Because in Anastasis each user can act as their own trusted dealer, we also do not
worry about the dealer learning the user’s key and hence Anastasis do not need any form
of DKG.

3.3. Authentication
To build a secure authentication procedure, today multi-factor authentication is the stan-
dard [26]. A single authentication method by itself is usually vulnerable. Multi-factor
authentication combines multiple authentication procedures to enhance the security of
the system.

During procedure of some authentication methods a so called token is sent to the user.
The user than has to provide the token to authorize.
The token should be a randomly generated passphrase which has at least 128 bits of
entropy. It is best practice for a token to have an expiration time, although this is not
relevant for security of Anastasis.

Anastasis is designed to use a wide range of authentication methods to authenticate
its users. Even though the user in Anastasis is free to specify only one authentication
method, we strongly recommend the use of multi-factor authentication, typically using
different authentication methods at different providers.

11

A short overview of common authentication methods and issues with each of them is
presented here.

3.3.1. Password authentication

Password authentication is probably the most widely used authentication procedure.
But as studies show the procedure has its drawbacks [27]. For example the handling
of the passwords, like storage or transmission, often is done poorly. Another problem
is that the user must remember his password. Therefore the password is limited to the
capabilities of the user to remember it. Thus people tend to use passwords with low
entropy. Those passwords are vulnerable to brute force attacks or dictionary attacks.
Another problem using passwords is the possibility of replay attacks: A password can
be stolen by an eavesdropper during online transmission and used by the attacker.

Because passwords can be forgotten, we do not recommend using this method for
provider-authentication in Anastasis. Users could easily add a passwords into their set
of “invariant” attributes used to derive the identity key, and then would automatically
obtain all of the possible benefits (and drawbacks) from using a password. Specifically,
they must make sure that the password cannot be forgotten, even if it means that the
password has low entropy.

3.3.2. Secure question

Similar to password authentication the use of an authentication method based on a secure
question requires the user to remember the correct answer to a specific question. The
difference here is that the question provides a context that helps the user to remember
the answer and the user does not necessarily need to memorize something new [28].

There are several variations to implement authentication using a secure question:

• The questions and answers are predefined.

• Just the questions are predefined.

• The user is free to create custom questions and answers.

The first option is the easiest one. But predefining the answers has the disadvantage
being impersonal and inflexible. The questions must inevitably be general, which may
allow an attacker to obtain answers by collecting public information about the victim, or
even simply solving the challenge by brute-forcing trying all possible choices. Therefore
the first option is not ideal.

The second option is more applicable but has some drawbacks, too. For example there
may be questions whose answers have multiple syntactic representations (for example,
“St.” versus “Street”) [28]. Another problem could be a question whose answer may
change over time. Asking for the favourite actor for example could be problematic. In
addition, there is a challenge to define questions for all kind of people. Some people for
example could not answer to the question, what the name of their pet is, because they
do not have one.

12

In case of the third option, we have all of the issues of the second one, but additionally
there is the difficulty for the user to ask creative questions. A good question should
only be answerable by the user. Also, it would be perfect to have the attacker on the
wrong track by using ambiguous questions with word plays the adversary cannot easily
comprehend.

Authentication using a secure question requires checking the validity of an answer that
may include private personal information. Consequently, Anastasis does not store the
answers of secure questions in cleartext. Instead, Anastasis only stores the hash value of
a (salted) answer. Thus the user only has to provide the hash value of the answer and
not disclose the answer itself.

3.3.3. SMS authentication

Another way to authenticate users that have a mobile phone is to use SMS authentica-
tion. The most popular use case is the so called Mobile TAN used to authorize online
banking transactions. A Mobile TAN is an SMS based One-Time Password (OTP),
short SMS OTP. SMS OTPs “were introduced to counter phishing and other attacks
against authentication and authorization of Internet services” [29].

However, SMS authentication is not very secure, as it relies on the security of the
mobile network, which has various vulnerabilities [30]. There are also specialized mobile
trojans which are used to eavesdrop on these messages directly on the user’s mobile
device.

While likely not as sensitive as answers to security questions, we still consider user’s
phone numbers as private information that deserves protection. Naturally, a service
authenticating the user needs the phone number to send a message to the user during
SMS authentication.

Hence, Anastasis providers have to learn the phone number during SMS authentica-
tion. However, we can use cryptography to ensure that the provider only gets the keys
to decrypt the phone number when the authentication process is started by the user as
part of a recovery operation. Thus, a compromise of the provider’s database would not
directly reveal the phone numbers to the attacker.

3.3.4. E-mail authentication

Authentication by email is similar to SMS authentication. Here, the user receives a
token by email and has to provide it during the authentication process.

It is important that the email should not already contain the requested information,
so in the case of Anastasis the keyshare. This is because the SMTP protocol used for
email offers no hard security assurances. In particular, the email is likely to be stored for
a indefinite period in the user’s mailbox, which could be easily compromised and read
by a mailbox provider. [31]

Like with SMS authentication, Anastasis also encrypts the email addresses when they
are stored at the provider. The user has to provide the corresponding decryption key to
the server during the authentication process.

13

3.3.5. VideoIdent

VideoIdent uses a video chat to verify the identity of a user. The user needs to show their
face using a camera to an employee of the VideoIdent service. The service then verifies
the identity of the user by comparing the video stream to a picture of the user [32].

Prerequisites for error-free identification are a video camera with good video quality
and a high-resolution image of the user on which the face can be clearly seen. The user
should also not change their outward appearance too much over time. For example,
growing or trimming a beard could lead to the VideoIdent-service employee not being
able to recognise a user with sufficient confidence.

For an attacker who looks similar to the user, there is a chance that the employee
incorrectly confirms the identification.

In Anastasis, pictures of users for VideoIdent authentication are considered private
information stored encrypted at the providers. During the authentication process, the
user has to provide the correct key for decryption to the service.

3.3.6. PostIdent

It is also possible to sent a verification code to the user by physical mail. A major
drawback of this authentication method is that it has high latency, and there is also the
possibility that physical mail gets intercepted or lost during transmission.

Anastasis providers using PostIndent would not store the address of their users in
cleartext. Instead the address is encrypted by the user and the provider would receive
the key to decrypt the address only during the authentication process.

3.3.7. Biometric authentication

Another way of authenticating is the biometric approach [33]. Biometric authentication
is based on “something you are”, like your iris or your fingerprint.

Biometric authentication is highly problematic because the attributes are invariant
and frequently shared involuntarily. Unlike passphrases or phone numbers, users cannot
change their genome or fingerprint in case their private biometric information is exposed.
Furthermore, there are credible threats against biometric authentication, in paritcular
there are documented inexpensive attacks against fingerprint and iris scan authentica-
tion. For example, a member of the German CCC e.V. was able to generate replicas
from Angela Merkel’s iris and Ursula von der Leyen’s fingerprint [34].

3.4. Existing solutions for key recovery
This section introduces some existing solutions for key recovery and why they are prob-
lematic.

14

3.4.1. Coinbase

Coinbase5 is a global digital asset exchange company, providing a venue to buy and sell
digital currencies. Coinbase also uses wallets secured with private keys. To recover this
private key the user has to provide a 12 words recovery phrase.

Coinbase offers a solution to securely deposit this recovery phrase onto the users
Google Drive or iCloud. [35] The security here lies within the Google or iCloud account
and another password used to encrypt the security phrase. The problem here is that
this approach undermines confidentiality, as encrypting a strong key with a weak key
simply reduces the security to that of the weaker key.

3.4.2. MIDATA

MIDATA is a project that aims to give patients back control over their medical data
and to enable them to share their data only with those they trust.6 In case a patient
lost their device with the MIDATA-application and also forgot their MIDATA password,
MIDATA provides a key recovery system using the Shamir Secret Sharing scheme (as
described in Section 3.2.1).

In their case, a few “persons working at MIDATA have generated a public-private
key pair (Recovery key) on their own computer. They keep the private recovery key for
themselves and never share it. The public keys are made public so that the apps can
also access them” [36]. Using Shamir’s Secret Sharing the MIDATA application splits
the user’s app private key into 5 parts which are encrypted with one of the published
recovery keys. The encrypted parts are then stored into the MIDATA server. During
the recovery process at least two of the 5 parts need to be decrypted by the persons
owning the private key part of the recovery key. “The decrypted parts are sent to the
server and the server may now reconstruct the app private key if enough parts of the
key have been decrypted” [36]. (Emphasis ours.)

The security of MIDATA as described in “Patient empowerment in IoT for eHealth -
How to deal with lost keys?” [36] is broken in three ways:

1. The password is reconstructed at the server, not on the patients device. An ad-
ministrator of the server could thus access the recovered password at that time. It
would be better to reconstruct the password only on the patients device.

2. It is not clear which authentication methods the persons working for MIDATA
use for their decisions and activities regarding the key recovery. The business
process used here could be vulnerable, and it is not clear whether multi-factor
authentication is used. As a result, we worry that it may be possible for an attacker
to successfully use social engineering via email (or other means) to illegitimately
trigger a recovery process.

3. The MIDATA system also does not offer any trust agility [37]. The user is forced
to accept the 2-out-of-5 rule with trustees provided by MIDATA.

5https://www.coinbase.com/
6https://www.midata.coop/

15

https://www.coinbase.com/
https://www.midata.coop/

4. Design
Anastasis is a service that allows the user to securely deposit a core secret with an
open set of escrow providers and recover it if the secret is lost. The core secret itself
is protected from the escrow providers by encrypting it with a master key. The main
objective of Anastasis is to ensure that the user can reliably recover the core secret,
while making this difficult for everyone else. Furthermore, Anastasis supports situations
where the user is unable to reliably remember any secret with sufficiently high entropy, so
Anastasis does not simply encrypt using some other key material in exclusive possession
of the user.

To uniquely identify users and to provide a first layer of protection, an “unforgettable”
identifier is used. This identifier should be difficult to guess for anybody but the user.
However, the identifier is not expected to have sufficient entropy or secrecy to be cryp-
tographically secure. Examples for such an identifier would be a concatenation of the
full name of the user and their social security or passport number(s). For Swiss citizens,
the AHV number could also be used.

4.1. Overview
The Figure 5 shows the legend for the illustration of the Anastasis key usage shown in
Figure 6 on page 17 and in Figure 7 on page 19. The Figure 6 gives an overview of the
keys used in Anastasis. It also shows how they are created and used. Figure 7 shows how
the keys to sign the (encrypted) truth data used during authentication are generated.
The truth seed(s) used in Figure 7 are part of the recovery document.

Figure 5: Legend of Figure 6
on page 17

16

Figure 6: Secrets used in Anastasis

17

In the following the keys shown in the Figure 6 on page 17 are explained:

kdf id The kdf id is derived from the user attributes and a randomly generated public
and constant salt value provided by the escrow provider using Argon2. It is used
to derive the private account key, the symmetric key 1 and the symmetric key 2.

private account key The private account key is used to sign the encrypted recovery
document. It is derived from the identity key using HKDF-1.

public account key The public account key is derived from its corresponding private
account key. It used to verify the signature of the encrypted recovery document
and also is the identifier of the user which is needed by the provider.

symmetric key 1 The symmetric key 1 is derived from the identity key using HKDF-2.
It is used to encrypt and decrypt the encrypted recovery document which is stored
by the provider.

symmetric key 2 The symmetric key 2 is derived from the identity key using HKDF-
3. It is used to encrypt and decrypt the different encrypted key shares which are
stored by the escrow providers.

truth key The truth key is randomly generated for each encrypted authentication data
and is stored within the encrypted recovery document. It may later be disclosed by
the user to the escrow provider to let it decrypt the encrypted authentication data
which allows the provider to then run the recovery authorization process.

master key The master key is randomly generated and is used to encrypt and decrypt
the encrypted core secret which is stored within an encrypted recovery document.
The encrypted master key also is stored within the encrypted recovery document.

policy key The policy keys are used for encryption and decryption of the encrypted
master key. A policy key is constructed by hashing a specific combination of key
shares specified by the user. For hashing SHA512 is used here.

18

Figure 7: Key generation for signing of encrypted “Truth” data in Anastasis

In the following the keys shown in the Figure 7 on page 19 are explained:

truth seed Clients generate a random truth seed for each truth which is stored in the
encrypted recovery document.

private truth key Private keys are derived per truth upload. They are used to sign the
uploaded data. This way, the escrow provider can later prove that they preserved
the data correctly. We use EdDSA [38] for the signatures.

public truth key Public keys are used to identify the truth in the provider’s database.
Providers only store the first truth upload with a valid signature. Changes to truth
are thus not possible, clients must create a fresh seed for every upload.

4.2. Adversary model
The adversary model of Anastasis has two types of adversaries: weak adversaries which
do not know the user’s identifier (the kdf id), and strong adversaries which somehow do
know a user’s identifier. Against weak adversaries, the system guarantees full confiden-
tiality, except for a provider-specific public account key which links certain requests from
the same user, and the data necessary for authentication. The latter is only disclosed
to the providers when the user requests key recovery. Weak adversaries cannot break
confidentiality even if all escrow providers are part of a conspiracy of weak adversaries.
For strong adversaries, breaking confidentiality of the core secret still requires that a
sufficient subset of the Anastasis escrow providers must have colluded with the strong
adversary. The user can specify a set of policies which determine which Anastasis escrow
providers would need to collude to break confidentiality. These policies also set the bar
for the user to recover their core secret.

Anastasis providers are also not individually trusted to provide availability or authen-
ticity. Users can specify multiple policies, and satisfying any one of the policies would

19

allow them to recover their core secret assuming the subset of providers specified in the
policy is available (and preserved the authenticity of the data). As clients sign their up-
loads, they can verify the authenticity of the data returned by checking the signatures.
Only strong adversaries are able to forge signatures, so they could create fraudulent re-
covery documents and/or key shares resulting in invalid restored core secrets. However,
because uploads are never destructive, strong adversaries can only succeed in break-
ing availability if they collude with a subset of escrow providers that are present in all
policies selected by the user.

Thus, users can improve confidentiality by having many different escrow providers
in their policies, and improve availability by having many policies with few escrow
providers. Anastasis does not resolve this trade-off, but allows users to make individual
choices and gives them agility with respect to the parties whom they offer their trust,
resulting in trust agility [37].

4.3. Encryption of the core secret
The core secret of the user is (AES) [39] encrypted using a symmetric master key.
Recovering the master key requires the user to satisfy a policy. Policies specify a set
of escrow methods, each of which leads the user to a key share. Combining those key
shares (by hashing) allows the user to obtain a policy key, which can be used to decrypt
the master key. There can be many policies, satisfying any of these will allow the user
to recover the master key.

Which escrow methods are combined into which policies and which providers are
involved can be different for each user. As users are unlikely to remember all the details,
Anastasis needs a way to remember the specific configuration a user made.

This process description is provided in a recovery document.

4.4. The recovery document
A recovery document includes all the information a user needs to recover access to their
core secret. It primarily identifies a set of encrypted key shares which have been entrusted
to different Anastasis providers. For each key share, the recovery document specifies
the respective Anastasis provider and also prescribes the authentication method, which
specifies how the user should convince the Anastasis server that they are authorized
to retreive the encrypted key share. Authentication methods can for example include
SMS-based verification, video-identification or a security question.

For each authentication method, specific Anastasis providers are separately provided
(see Section 4.8) with the associated encrypted key share and (separately encrypted)
authentication data. Anastasis operators may learn the authentication data during the
recovery process to authenticate the user. Examples for authentication data would be a
phone number (for SMS), a picture of the user (for video identification), or the (hash of)
a security answer. A strong adversary is assumed to be able to learn the authentication
data, while weak adversaries must not (except if they are the provider and then they
may learn it only during key recovery).

20

The recovery document also specifies policies, which describe the combination(s) of
the key shares (and thus authentication processes) that would suffice to obtain access
to the core secret. For example, a policy could say that the authentication methods “A
and B” suffice, and a second policy may permit “A and C”. A different user may choose
to use the policy that “A and B and C” are all required. Anastasis imposes no limit on
the number of policies in a recovery document, or the set of providers or authentication
methods involved in guarding a user’s secret.

Weak adversaries must not be able to deduce information about a user’s recovery
document (except for meta data such as its length or approximate creation time, which
may be exposed to an adversary which monitors the user’s network traffic or operates
an escrow provider).

4.5. Identity-derived encryption
To start, a user provides their private (alas not really secret), unique and unforgettable
user attributes as a seed to identify their account. For example, this could be a social
security number together with their full name. Specifics may depend on the cultural
context, in this document we will simply refer to this information as the user attributes.

For each Anastasis provider, a kdf id key is derived from the user’s attributes and a
provider salt using Argon2 [20], a computationally expensive cryptographic hash func-
tion. Using an expensive hash algorithm is assumed to make it harder for a weak adver-
sary to determine user attributes by brute force guessing. The salt ensures that the keys
for the same user cannot be easily correlated across the various Anastasis servers. How-
ever, it is assumed that a strong adversary performing a targeted attack can compute
the kdf ids.

The listing in Figure 8 provides pseudo-code for the computation of the kdf id. The
inputs are:

attributes The personal attributes provided by the user.

server_salt The salt from the Anastasis provider.

keysize The desired output size of the KDF, here 32 bytes.

21

user_identifier_derive(attributes , server_salt , keysize)
{

kdf_id = Argon2(attributes , server_salt , keysize)
return kdf_id

}

Figure 8: The user’s attributes are hashed with Argon2, to provide a kdf_id which will
be used to derive other keys later. The hash must also be made over the
respective provider’s server_salt. This ensures that the kdf_id is different on
each server. The use of Argon2 and the respective server_salt are intended to
make it difficult to brute-force kdf_id values and help protect user’s privacy.
Also this ensures that the kdf_ids on every server differs. However, we do not
assume that the identifier or the kdf_id cannot be determined by an adversary
performing a targeted attack, as a user’s identifier is likely to always be known
to state actors and may likely also be available to other actors.

Anastasis derives symmetric key material — but not the master secret — from the
kdf id using different HKDFs [17].

When confidential data — such as the recovery document or the truth — is uploaded
to an Anastasis server, the respective payload is encrypted using AES-GCM with the
respective symmetric key and initialization vector derived key material as shown in
Figure 6 and a high-entropy nonce. The nonce and the GCM tag are prepended to
the ciphertext before being uploaded to the Anastasis server. This is done whenever
confidential data is stored with the server, so both for encrypted authentication data
(/truth uploads) and encrypted recovery documents (/policy uploads).

To ensure that the key derivation for the encryption of the recovery document differs
fundamentally from that of an individual key share, we use different salts for different
types of operations (“erd” and “eks” respectively):

encryption_key_create(kdf_id , salt, nonce)
{
iv, key = HKDF (kdf_id , nonce , salt, keysize + ivsize)
return iv,key
}

HKDF() The HKDF-function uses to phases: First we use HMAC-SHA512 for the
extraction phase, then HMAC-SHA256 is used for expansion phase.

kdf_id Hashed identifier.

keysize Size of the AES symmetric key, here 32 bytes.

ivsize Size of the AES GCM IV, here 12 bytes.

22

nonce 32-byte nonce, must never match “ver” (which it cannot as the length is different).
Of course, we must avoid key reuse. So, we must use different nonces to get different
keys and ivs (see below).

key Symmetric key which is later used to encrypt the documents with AES256-GCM.

iv IV which will be used for AES-GCM.

encrypt(kdf_id , data, salt)
{
nonce = generate_random_bytes(32)
iv, key = encryption_key_create(kdf_id , salt, nonce)
encrypted_data , aes_gcm_tag = AES256_GCM(data, iv, key)
encrypted_data = nonce + aes_gcm_tag + encrypted_data
return encrypted_data
}

key_share_encrypt(kdf_id , key_share)
{
encrypted_key_share = encrypt(kdf_id , key_share , "eks")
return encrypted_key_share
}

recovery_document_encrypt(kdf_id , recovery_document)
{
encrypted_recovery_document =
encrypt(kdf_id , recovery_document , "erd")
return encrypted_recovery_document
}

encrypted_recovery_document The encrypted recovery document which contains the
authentication methods, policies and the encrypted core secret.

encrypted_key_share The encrypted key_share which the escrow provider must release
upon successful authentication.

nonce Nonce which is used to generate keys and ivs which are used for the encryption.
The nonce must contain either eks or erd.

encrypted_data The encrypted data contains the either a recovery document or a key
share which was encrypted and the nonce and the aes_gcm_tag. To be able
to decrypt it the first 32 Bytes are the nonce and the next 12 Bytes are the
aes_gcm_tag.

23

4.6. Authenticity of recovery documents
/policy/ requests are used to upload new encrypted recovery documents. For users to
authorize /policy operations, we need an account key pair. Thus, in addition to the
symmetric keys, an EdDSA-based account key is derived from the kdf id (see Figure 6)
and used to identify the “account” of the user at each Anastasis server. EdDSA pub-
lic keys are always points on Curve25519 and represented using the standard 256-bit
Ed25519 compact format. The binary representation is converted to Crockford Base32
when transmitted inside JSON or as part of URLs in the RESTful API of Anastasis
(see Section 5.2). EdDSA signatures are also provided in Crockford Base32-encoding
and transmitted using the HTTP header Anastasis-Account-Signature. Encrypted
recovery documents are stored using the public account key as the identifier.

As the account keys are derived from the kdf id — which strong adversaries are
assumed to know —, we cannot assure that the corresponding private account key is
truly secret. Thus, policy operations must never be destructive: A strong adversary
can derive the private key and access (and with the kdf id also decrypt) the user’s
recovery document (but not the core secret!), and also upload a new version of the
encrypted recovery document. However, because uploads are not destructive, even a
strong adversary cannot delete an existing version and thus cannot break availability.

For the generation of the private key we use the kdf id as the entropy source, hash it
to derive a base secret which will then be processed to fit the requirements for EdDSA
private keys. From the private key we can then generate the corresponding public key.
Here, the string “ver” is used for the salt value for the HKDF to ensure that the result
differs from other cases where we hash kdf id:

eddsa_keys_create (kdf_id , salt, keysize)
{

ver_secret = HKDF(kdf_id , salt, keysize)
eddsa_priv = eddsa_d_to_a(ver_secret)
eddsa_pub = get_eddsa_pub(eddsa_priv)
return eddsa_priv , eddsa_pub

}

HKDF() The HKDF-function uses to phases: First we use HMAC-SHA512 for the
extraction phase, then HMAC-SHA256 is used for expansion phase.

kdf_id Hashed identifier.

salt Is used that different keys are generated, the salt here is ”ver”.

key_size Size of the output, here 32 bytes.

ver_secret Derived key from the kdf_id, serves as intermediate step for the generation
of the private key.

24

eddsa_d_to_a() Function which converts the ver_key to a valid EdDSA private key.
Specifically, assuming the value eddsa_priv is in a 32-byte array “digest”, the
function clears and sets certain bits as follows:

digest[0] = (digest[0] & 0x7f) | 0x40;
digest[31] &= 0xf8;

eddsa_priv The generated EdDSA private key.

eddsa_pub The generated EdDSA public key.

4.7. Account signatures
The EdDSA account keys are used to sign the encrypted recovery document sent from
the client to the server.

(anastasis -account -signature) = eddsa_sign(h_body , eddsa_priv)
ver_res =

eddsa_verifiy(h_body , anastasis -account -signature , eddsa_pub)

anastasis-account-signature Signature over the SHA-512 hash of the body using the
purpose code TALER_SIGNATURE_ANASTASIS_POLICY_UPLOAD (1400)
(see GNUnet EdDSA signature API for the use of purpose).

h_body The hashed body.

ver_res A Boolean value. True: Signature verification passed, False: Signature verifi-
cation failed.

When requesting /policy downloads, the client must also provide a signature:

(anastasis -account -signature) = eddsa_sign(version , eddsa_priv)
ver_res =

eddsa_verifiy(version , anastasis -account -signature , eddsa_pub)

anastasis-account-signature Signature over the SHA-512 hash of the body using the
purpose code TALER_SIGNATURE_ANASTASIS_POLICY_DOWNLOAD
(1401) (see GNUnet EdDSA signature API for the use of purpose).

version The version requested as a 64-bit integer, for the “latest version”.

ver_res A Boolean value. True: Signature verification passed, False: Signature verifi-
cation failed.

25

4.8. Authenticity of truth
/truth/ requests are used to upload encrypted authentication data and encrypted key
shares to an Anastasis escrow service. As an additional layer of protection, an Anastasis
escrow service cannot link truth data to policy data, except maybe by observing the
timing of the requests.

Anastasis uses EdDSA-based truth keys to identify truth objects. For those, the truth
keys are derived from a truth seed, as show in Figure 7. The private truth key is used to
authorize the truth upload. The signatures also authenticate the encrypted key shares
returned from the Anastasis provider during recovery. The signature process for truth
is analogous to that for accounts.

4.9. Availability considerations
Anastasis considers two main threats against availability. First, the Anastasis server op-
erators must be protected against denial-of-service attacks where an adversary attempts
to exhaust operator’s resources. The API protects against these attacks by allowing
operators to set fees for expensive operations. Furthermore, all data stored comes with
an expiration logic, so an attacker cannot force servers to store data indefinitely.

A second availability issue arises from strong adversaries that may be able to com-
pute the account keys of some user. While we assume that such an adversary cannot
successfuly authenticate against the truth, the account key does inherently enable these
adversaries to upload a new policy for the account. This cannot be prevented, as the
legitimate user must be able to set or change a policy using only the account key. To
ensure that an adversary cannot exploit this, policy uploads first of all never delete exist-
ing policies, but merely create another version. This way, even if an adversary uploads a
malicious policy, a user can still retrieve an older version of the policy to recover access to
their data. This append-only storage for policies still leaves a strong adversary with the
option of uploading many policies to exhaust the Anastasis server’s capacity. We limit
this attack by requiring a policy upload to include a reference to a payment identifier
from a payment made by the user. Thus, a policy upload requires both knowledge of
the identity and making a payment. This effectively prevents and adversary from using
the append-only policy storage from exhausting Anastasis server capacity.

26

5. Implementation
The Anastasis is written in C. We decided to use C because of the various dependencies,
including cryptographic libraries. Especially, GNU Taler and Sync, which are working in
concert with Anastasis, are also written in C. Using the same language makes integration
and testing of Anastasis much easier.

The whole Anastasis application consists of multiple components. Figure 9 gives an
overview over all the components.

Figure 9: Secret split process

In the center is the core implementation of Anastasis. On the left are some of the
planed authentication methods from the application. On the right side of the box are
the core parts which are necessary to operate Anastasis commercially. These parts are
anticipated for a production deployment, but not part of the implementation for this
thesis.

At the bottom section are the external libraries used for the project. These libraries
are presented in Section 5.6.

27

5.1. System architecture
This graphic shows the basic architecture of the Anastasis application. It shows a sim-
plified flow of the application. The details of each component are explained later.

Figure 10: System design overview

1. The Anastasis CLI interacts with the Anastasis API. The Anastasis API is respon-
sible for triggering interactions with the user, and also manages the interactions
between the various client-side components.

2. After the user provided their unforgettable secret, the Crypto API derives the
needed key material for the further communication. This is simplified, in reality
the client would first need to download the server salt to generate the user keys.
The crypto API is later also responsible for the decryption and encryption of the
data, sent or received from the server.

3. The Service API is responsible for the communication with the Anastasis server.
The Anastasis API sends the previously generated data and the user selected
request to the service. The Service API is also responsible to handle the server’s
response to the request.

28

4. The central webserver logic handles HTTP requests sent to it by the clients. It
will dispatch requests to the corresponding handler. The webserver’s core logic also
returns the response and the status code of the operation to the client application.

5. Each REST endpoint of the Anastasis server is implemented by a specific handler.
The handler prcesses the requests, typically by storing or looking up the requested
data with the database. When the request is finished, the handler will send back
the data or the status code to the webserver’s core logic.

5.2. Server architecture
The Anastasis server architecture consists of two components. A web server with a REST
API and a PostgreSQL database. The structure of these two components is shown in
Figure 11.

Figure 11: Anastasis server architecture

The webserver of Anastasis provides a RESTful API. For a detailed documentation of
the REST API, see appendix A.

29

5.2.1. Database

The database schema of Anastasis is shown in Figure 12.

Figure 12: Anastasis database schema

The database schema consists of four main tables:

• The Truth table is responsible for storing the key shares and its authentication
method. The key share and the authentication data are stored encrypted in the
database. The authentication data is only decrypted during authentication. The
key share is never decrypted for the server. This protects the privacy of the cus-
tomer. Likewise, the user data is protected after a possible theft.

• The User table contains the identification of the user and an expiration times-
tamp. This timestamp is a subscription period. This timestamp is updated after
each payment the user makes. Users for whom the subscription has expired are
periodically deleted.

• The Payments table contains the details of a payment from a user. The payment
is used either for the post-counter or the subscription. The post-counter is decre-
mented after each upload of a recovery document. The user can only upload the
recovery document if the provided payment contains a post-counter which is at
least 1. Through this measure we can prevent people from maliciously filling our
database.

30

• The Recoverydocument table contains the recovery information. The recovery doc-
ument is stored encrypted in the database. This offers better protection, as ex-
plained earlier for the Truth table. Each recovery document record also contains
a version, a hash of the recovery document and a signature. The version attribute
allows the user to lookup a specific version of the document. The hash is used to
check if the user uploads a duplicate of the document. The signature attests the
integrity of the recovery data.

5.2.2. Authentication methods

This section describes an overview over the different possible authentication methods for
Anastasis. In our implementation only the secure question is implemented. The other
methods are just explained how they would be implemented.

In all cases, the authentication process begins by the user decrypting their (encrypted)
recovery document, which contains a list of Anastasis providers, associated authentica-
tion methods, truth_seeds and associated truth encryption keys. The recovery process
than varies slightly depending on the authentication method.

SMS (sms) The user tells the server with a request that they wants to authorize key
recovery (via GET /truth/$TRUTH_PUB), providing a way to decrypt the truth with
the phone number. The server will then generate a $PIN and send it via an SMS provider
to the stored number in the truth object. The client then must send another request
with the sent $PIN (via GET /truth/$TRUTH_PUB?response=$PIN). The server can
now check if the two PINs match. Upon success, the server returns the encrypted key
share.

Video identification (vid) This method allows the user to identify via video-call. Since
the respective images must be passed on to the video identification service in the event
of password recovery, it must be ensured that no further information about the user can
be derived from them. Hence, the user’s client software must try to delete metadata
that could result in accidental information leakage about the user from the image before
encrypting and uploading it to the Anastasis provider.

For recovery, the user must first send a request to server that they wants to authorize
recovery (GET /truth/$TRUTH_PUB). The Anastasis provider will then decrypt the
user’s image and send a request with a $TOKEN to a video authentication provider that
a user wants to authenticate, and respond to the user with a link to a video conference.
The video authentication provider then checks via video conference that the user in the
image is the same that they have on the video link. Upon success, the video provider
releases the $TOKEN to the user. The client then must send another request with
the $TOKEN (via GET /truth/$TRUTH_PUB?response=$TOKEN). The Anastasis
provider checks that the tokens match, and upon success returns the encrypted key
share.

31

Post identification (post) The user tells the Anastasis provider with a request that
they want to authenticate using Post identification (GET /truth/$TRUTH_PUB). The
Anastasis provider uses the request to decrypt the user’s truth to determine the user’s
postal address, and sends them letter containing a $PIN. Upon receiving the letter, the
client then has to send another request with the $PIN (GET /truth/$TRUTH_PUB?re-
sponse=$PIN). The server can now check if the two PINs match. Upon success the server
will release the encrypted key share.

Security question (qa) The user provided Anastasis with a secure question and a (nor-
malized) answer. The secure question becomes part of the encrypted recovery document,
and is never disclosed to weak adversaries, even during recovery. The encrypted truth on
the server only contains a (salted) hash of the answer. The Anastasis provider cannot
learn the plaintext answer. Because of the salt, and it cannot mount a confirmation
attack either.

If the user wants to recover the key share from the server, they must provide the
(salted) hash of the answer to the security question (via GET /truth/$TRUTH_PUB?re-
sponse=$HASH). The server then checks if the stored and the provided hash match.
Upon success the server responds with the encrypted key share.

5.3. Client architecture
The Anastasis client architecture consists of two main components. A client API which
communicates with the server and a command line application which interacts with the
user. The structure of these two components is shown in Figure 13.

Figure 13: Anastasis client architecture

The Anastasis client implementation includes three distinctive APIs: a Crypto API
which provides the different cryptographic functions, a Service API which sends the

32

request to the server and the Client API which manages the main data structures and
provides an abstraction for the application.

5.3.1. Crypto API

The most important data structures in the crypto API are the following:

• The kdf_id is a hash code which was generated with Argon2. The entropy source
is the user’s unforgettable secret. The kdf_id is used to create various key’s, for
more details see Chapter 4.

struct kdf_id
{

Hashcode; //512-bit
}

• The account_private_key is used to sign the data and check the signature later. It
is a 256-bit EdDSA private key. It is generated with the kdf_id as entropy source.

struct account_private_key
{

eddsa_private_key;
}

• The account_public_key is used as the user identification on the different providers.
It is generated from the private_key.

struct account_public_key
{

eddsa_public_key;
}

• The truth_key is a randomly generated AES-256 GCM key. It is used to encrypt
the user specifiy data in the truth object.

struct truth_key
{

key; //256-bit
}

• The truth_seed is a randomly generated nonce with a size of 32 Bytes. It is used to
derive a truth_private_key and is stored within an encrypted recovery document.

struct truth_seed
{

nonce; //256-bit
}

33

• The truth_private_key is used to sign the encrypted key share and the encrypted
authentication data. It is a 256-bit EdDSA private key. It is generated with the
truth seed as entropy source.

struct truth_private_key
{

eddsa_private_key;
}

The truth_public_key is used as the user identification on the different providers
in case of uploaded truths. It is generated from the truth private key.

struct truth_public_key
{

eddsa_public_key;
}

• Anastasis needs different symmetric keys to encrypt data for example, the recovery
document. These symmetric keys are all 256-bit large hashcodes. These symmetric
keys are generated through the key routine defined in Implementation Key usage.

struct symmetric_key
{

hashcode; //256-bit
}

• Each policy has a separate policy_key. The key is used to encrypt the master_key.
The policy_key is also a AES-256 GCM key. It is generated through the combi-
nation of a set of key_shares.

struct policy_key
{

hashcode; //256-bit
}

• Every truth object contains a key_share. A key_share is a 256-bit random gener-
ated bit sequence.

struct key_share
{

hashcode; //256-bit
}

• Before every encryption a random 256-bit large nonce is generated. This gives the
encryption algorithm a random factor.

34

struct nonce
{

hashcode; //256-bit
}

• To use AES-256 GCM an IV must be generated. It is generated with an HKDF
over a salt the kdf_id and a symmetric key.

struct iv
{

hashcode; //128-bit
}

• The aes_tag is generated after each encryption, it is later used to check the in-
tegrity of the data.

struct aes_tag
{

hashcode; //128-bit
}

The functions of the crypto API basically provide the canonical set of cryptographic
operations (hash, encrypt, decrypt, etc.) over these basic data structures.

5.3.2. Client API

The most important data structures in the client API are the following:

• The secret share data structure is used to upload a new recovery document.

struct secret_share
{

kdf_id;
last_etag;
policies;
core_secret;

}

– kdf_id: is used to compute the account public and private key. The hash is
512bit large.

– last_etag: this hash is sent with the recovery document. The server will check
the hash if the document on the server is the same. This prevents unnecessary
uploads. The hash is 512-bit large.

– policies: is a list of all generated policies the user wants to combine into a
recovery document.

35

– core_secret: is the user provided core secret. This is just a binary blob so
Anastasis does not have a restriction for the user secret. This could be a for
example a private key or a password the user wants to backup.

• The recovery information data structure holds a recovery document. It is down-
loaded within the recovery process and stored inside a recovery data structure.

struct recovery_information
{

struct decryptption_policies;
struct challenges;
version;
salt;

}

– decryption_policies: holds all available policies within the downloaded recov-
ery document.

– challenges: holds all available authentication methods within the recovery
document.

– version: the version of the downloaded recovery document is stored here.
– salt: this is the salt used for the generation of the policy keys. The salt is a

512-bit value.

• The recovery data structure is generated at the start of a secret recovery. It
contains all available policies and lists which challenges are solved. Through this
struct the client can check if a policy was solved completely.

struct recovery
{

kdf_id;
version;
provider_url;
salt;
solved_challenges;
struct recovery_information;

}

– kdf_id: is used to compute the account public and private key. The hash is
512bit large.

– version: hold the user desired version he wishes to download. This can be
null then the client downloads the latest version.

– provider_url: the client will download the recovery document from this provider
url.

– salt: this is the salt of the provider specified in provider_url.

36

– solved_challenges: this is a list of all solved challenges. This list is updated
after each successful authentication. This allows the client to check if a policy
is solved.

– recovery_information: as previously mentioned this data structure holds the
downloaded recover document to process within the recovery

• A truth data structure is used to upload a new authentication method to a provider.
It is identified by the TRUTH_PUB which the user creates through a HKDF over
the truth_seed. The truth data structure is only used for the secret share process
and not for the recovery.

struct truth
{

truth_seed;
method;
mime_type;
encrypted_truth;
encrypted_key_share;

}

– truth_seed: the truth_seed is the identification of the truth object. It is used
as entropy source to generate the TRUTH_PUB, which later identificates the
truth object. The truth objects are not linked to the user. A list of these
truth_seeds are stored inside the recovery document, with this the user data
is more anonymous.

– method: this defines which method the user chose to configure, for example
SMS, email, secure question.

– mime_type: this defines in which format the truth was safed, for example
jpeg, png, txt, json.

– encrypted_truth: the encrypted truth holds the authentication specific data.
It holds for example the hashed answer and the question. It is encrypted with
the specific truth_key which is stored inside the recovery_document.

– encrypted_key_share: this is the key_share protected by this truth. It is en-
crypted with a key which was derived with the kdf_id of the user. The server
will later send this key_share to the user upon successful authentication.

37

• The policy data structure is used to create new policies to combine them into the
recovery document. The policy data structure is only used for the secret share
process.

struct policy
{

truths;
policy_key;
salt;

}

– truths: every policy has a set of truths which need to be solved to recover the
policy_key

– policy_key: the policy_key is created through the combination of the differ-
ent key_shares within each of the truth objects. It is later used to encrypt
the master_key.

– salt: defines the salt used to create the policy_key.

• The decryption_policy data structure is used in the recovery process. It has
slightly different values as the policy structure.

struct decryption_policy
{

truth_seeds;
encrypted_master_key;
salt;

}

– truth_seeds: is a list of truth_seeds which need to be solved to recreate the
policy key. Each truth_seed has a corresponding challenge.

– encrypted_master_key: holds an encrypted version of the master_key which
was used to encrypt the core secret. In every policy lies the same master_key
which was encrypted by the specific policy_key.

– salt: defines the salt which was used to create this policy_key.

38

• The challenge data structure is used for the several key_share lookups. We named
the process of authentication on the providers as challenges. It has slightly different
variables as the truth data structure.

struct challenge
{

truth_seed;
url;
truth_key;
method;
key_share;
instructions;

}

– truth_seed: Entropy source to generate the TRUTH_PUB, which identifies
the challenge on the server.

– url: defines the provider URL on which the truth was stored.
– truth_key: this key is sent to the server within the authentication procedure.

The server can decrypt the truth with this key to start the authentication.
– method: defines the method of this challenge, for example email, SMS, secure

question.
– key_share: After each successful authentication the key_share which was sent

by the server will be saved within this variable. It is later used to recreate a
policy_key.

– instructions: this contains a string with the instructions for the user. This
could for example be:” What is your favourite colour?” or” An SMS was sent
to the number +41...... please provide the pin”.

The functions of the client API basically provide a way to backup a core secret by
providing user’s identity attributes, the secret and constructing the policies, as well
as a way to recover a core secred by providing the user’s identity attributes and then
satisfying the authentication challenges.

5.3.3. Service API

The service API is responsible for sending the requests to the REST API of the server.
The client has implemented functions for every endpoint. For more details see REST
API documentation in appendix A.

39

5.4. Application flow
This section describes a happy flow of the two protocols of Anastasis, secret splitting
and secret recovery.

5.4.1. Secret splitting

Figure 14 illustrates the secret splitting process.

Figure 14: Secret split process

40

1. The user selects a new escrow provider on which per wants to store a truth object.

2. The client software downloads the terms of service for this provider (GET /terms).
This is also a check if the server is available if this command doesn’t respond the
client will abort the process.

3. Next the client requests the server configuration (GET /configuration). The con-
figuration lists the available authentication methods and the protocol version of
the server.

4. The client downloads the server salt (GET /salt). The salt is used to generate the
server specific account public key, which identifies the user.

5. After the user has generated the public key, per will create a truth object on the
client. The truth object contains all the needed information for the recovery for
this key share. This truth object is sent encrypted to the server and stored under
the TRUTH_PUB the client generated (POST /truth/$TRUTH_PUB).

6. In this scenario the client has not jet paid for the upload. This means the server
will respond with the HTTP status code 402 Payment required. The client first
must do a payment with our payment provider — GNU Taler. After the successful
payment the client will receive a payment identifier. With this payment identifier
he can resend the previously failed request.

7. The user will now repeat the steps 1-6 until per thinks that they have setup a
sufficient amount of authentication methods. The user can now combine these
providers to create policies. For example per may have stored three truth objects
at three different providers. This means per can now define combinations with
these providers, for example A+B, A+C and B+C. This means the user has three
ways to recover their secret.

8. After the user has generated the policies the client will generate a recovery doc-
ument. The recovery document contains a list of all truth_seed’s used, a list
of the policies and the encrypted core secret of the user. The client will now
send a encrypted recovery document to each provider used in the recovery docu-
ment (POST /policy/$ACCOUNT_PUB). Through this, the recovery document
is replicated and recovery can proceed without a single point of failure.

41

5.4.2. Secret recovery

Figure 15 illustrates the recovery process.

Figure 15: Secret recovery process

1. The user selects a server on which per previously stored a recovery document.

2. Next the client downloads the server salt to compute the server specific account
public key (GET /salt).

3. After the user generated the public key, per will download the recovery document.
At this point per can define a specific version or the latest version of the recov-
ery document. In the illustration the client downloads the latest version (GET
/policy/$ACCOUNT_PUB).

4. The client will now decrypt the recovery document and list all policies and au-
thentication methods. The user now has to solve these challenges. In this example
the user has to answer a secure question which was sent to them in the recovery
document. (GET /truth/$TRUTH_PUB?response=$RESPONSE)

42

5. Note the server can define that a challenge has a certain cost, in this scenario
the server rejects the first request because the user has not yet paid for recovery.
After the payment the user can resend the request. After each successfuly solved
challenge the client will check if one of the policies is completely satisfied. If all
shares needed for one of the policies have been recovered, the client will decrypt
the core secret and provide it to the user.

Figure 15 shows the flow using a secure question for the authentication challenge. If the
user would have chosen a complex authentication method like SMS or E-Mail, the client
would first need to start the challenge with the request (GET /truth/$TRUTH_PUB).
The server would then notify the user that per will receive some token out of bounds.
After that, the user would have to provide for example the PIN sent to them via SMS with
the same request as before (GET /truth/$TRUTH_PUB?response=$RESPONSE).

5.5. Client Application Command Line Interface (CLI)
There are two client applications which interact with the user. First the Anastasis
splitter and second the Anastasis assembler. The splitter application is responsible for
the backup of the core secret. The assembler is then responsible for the recovery of the
core secret.

Both commands are started with a configuration option “–me=FILE” that gives the
name of a file with the user’s identity attributes.

5.5.1. Anastasis splitter

The user starts the assembler by passing a JSON document with their unforgettable
identity attributes (name, social security number, ...).

The following commands are available:

• server add $URL: this command lets the user add escrow providers. The command
will check if a supported escrow service is available under the provided URL. Af-
terwards it will download its terms and salt. The server needs to be added before
the user can do any uploads on it.

• truth add $server $method $truth: with this command the user can upload a truth
on a previously added server. The user needs to specify the authorization method
used and the truth for the authorization process, for example the phone number for
SMS authentication. The application will check if the server supports the provided
method before uploading.

• policy add $truth1 $truth2...: after a user has added all the truths, per can start
to create policies. Per can combine the truths in any way they wish. It is also
possible to just store one truth in a policy, but this is not recommended since it
defies the design of the application.

• policy: shows all created policies.

43

• truth: shows all created truths.

• server: shows all added servers.

• publish $secret: if the user is finished per can publish the configuration. The ap-
plication will then generate the recovery document with the provided information
and secret. Afterwards, it will upload the recovery document on every server that
was used. For recovery, the user only needs to remember any one of the servers.

Below is an example transcript of an interaction with the splitter:

$ anastasis -splitter --me=identity.json
anastasis -splitter > server add $URL1
version: 1.0
annual fee: 4.99 KUDOS ,
available policy methods: sms
Server #1 available
anastasis -splitter > server add $URL2
version: 1.0
annual fee: 3.99 KUDOS ,
available policy methods: sms, question
Server #2 available
anastasis -splitter > truth add server#1 sms +492452526
Truth #1 added for server #1
anastasis -splitter > truth add server#2 mail "hoehenweg 80, Biel"
Sorry , server #2 does not support 'mail'
anastasis -splitter > truth add question "favorite color" "red"
Truth #2 added
anastasis -splitter > policy add truth#1 truth#2
Policy #1 defined
anastasis -splitter > policy
Policy#1: #truth#1 #truth2
anastasis -splitter > truth
truth#1: server#1 sms +492452526
truth#2: server#2 question "favorite color" <OMITTED >
anastasis -splitter > truth --secrets
truth#1: sms +492452526
truth#2: question "favorite color" "red"
anastasis -splitter > server
server#1: http://anastasis.example.com/ methods: sms,
insured up to: 420 KUDOS , cost: 0.4 KUDOS
anastasis -splitter > publish
Server#1 failure: 402 payment required:
payto://pay/ABALSASDFA KUDOS:0.3
Server#2 failure: 402 payment required:

44

payto://pay/ABALSAADAS KUDOS:0.5
Total: 0.8 KUDOS
Here: taler -wallet -cli payto://pay/ABALASDFA used to pay!
anastasis -splitter > publish
Server#2 failure: 402 payment required
Here: taler -wallet -cli payto://pay/ABASDFASDF used to pay!
anastasis -splitter > publish "my super secret"
Thank you for using Anastasis.
$

5.5.2. Anastasis assembler

The user starts the assembler by passing a JSON document with their unforgettable
identity attributes (name, social security number, ...). They also must pass the URL
of an escrow provider which stores their recovery document, as well as the requested
version of the recovery document. The assembler will then download and decrypt the
recovery document and begin the recovery process.

The following commands are available:

• truth: shows all available authorization challenges from the recovery document
and their status (“(-)” not solved, “(+)” solved)

• policies: shows all available policies in the recovery document and the respective
status of the truths used in each policy.

• try $truth: this command starts an authorization process which needs interaction
with external services like SMS or email. It shows the instructions to follow to
authorize release of the share.

• answer $truth $answer: this command tries to answer the selected challenge with
the provided answer. The application will check the answer and give a feedback to
the user. Everytime a challenge is solved, the client API will check if as a result
any of the policies is completely satisfied. If any policy was completely satisfied,
the assembler will print out the recovered core secret and exit.

Below is an example transcript of an interaction with the assembler:

$ anastasis -assembler --import https://anastasis.example.com/
--policy -version=42 --me=identity.json
anastasis -assembler > truth
truth#1(-): KUDOS 0.0 question "favorite color"
truth#2(-): KUDOS 0.4 sms
truth#3(-): KUDOS 2.6 post
anastasis -assembler > policies
policy#1: KUDOS 0.4 truth#1 truth#2 missing
policy#2: KUDOS 3.0 truth#1 truth#2 truth#3 missing

45

anastasis -assembler > try truth#2
payto://pay/BASDFASD
SMS arrives asynchronously
anastasis -assembler > answer truth#2 1234
Success truth#2
anastasis -assembler > answer truth#1 "blue"
Failed truth#1
anastasis -assembler > truth
truth#1(-): KUDOS 0.0 question "favorite color"
truth#2(+): KUDOS 0.4 sms
truth#3(-): KUDOS 2.6 post
anastasis -assembler > policies
policy#1: KUDOS 0.0 truth#1 missing
policy#2: KUDOS 2.6 truth#1 truth#3 missing
anastasis -assembler > answer truth#2 "red"
Success truth#2
//One of the policies was solved successfully and the secret is recovered.
Secret was: "my super secret"
$

5.6. Libraries
In this section the libraries used by Anastasis are presented.

5.6.1. GNU Taler

GNU Taler is one of the main reasons why we started to implement Anastasis, since the
application needs a system to back up the private keys of their users. “GNU Taler is
a privacy-preserving payment system. Customers can stay anonymous, but merchants
can not hide their income through payments with GNU Taler. This helps to avoid tax
evasion and money laundering.” [40]

To operate GNU Taler the user needs to install an electronic wallet. Backups of the
wallet are secured with a secret key. Here comes Anastasis into play, Anastasis will
secure this secret key for the user.

In our implementation GNU Taler is also our payment system. We decided to use
GNU Taler because both Anastasis and GNU Taler are privacy preserving applications.
If we for example used credit cards for payments the user would no longer be anonymous
which is helpful for the security of Anastasis as it allows us to use the user’s name in the
user’s identity attributes. GNU Taler is also a GNU package and Free Software. [40]

46

5.6.2. PostgreSQL

PostgreSQL is a Free/Libre Open Source object-relational database. PostgreSQL has
over 30 years of active development which makes it a stable and reliable software.

We use PostgreSQL as our database on the Anastasis server. We decided to use Post-
greSQL because it is an open source and lightweight software which has a big community.
This means there are a lot of helpful documentations and forums. [41]

5.6.3. Libcurl

Libcurl is a libre URL transfer library. Libcurl supports a wide range of protocols and
a C API. Libcurl is also ready for IPv6 and SSL certificates.

For Anastasis we use Libcurl to generate the client-side HTTP requests. We decided
to use Libcurl because it is also written in C and free software. The software is also well
supported and has a good documentation. This makes the integration in our application
easy. [42]

5.6.4. GNU Libmicrohttpd

GNU libmicrottpd is a small C library which provides an easy way to run a HTTP server.
We use GNU Libmicrohttpd in Anastasis to provide a simple webserver. The main reason
why we did not use apache or nginx is that we do not need a standalone webserver. The
Anastasis webserver just must handle some API requests, a standalone webserver is
not needed for that and would make the infrastructure more complex to maintain and
develop. GNU Libmicrohttpd is also a GNU package and Free Software. [43]

5.7. Testing
To test our application, we used the GNU Taler testing library as our foundation for t
of our testings. This library allows you to create testing instances of both the Anastasis
application and the GNU Taler payment system. We implemented unit tests for the
crypto functions and the database operations. The following four tests are independently
performed.

• The first test is the database test. The Anastasis testing library first connects to
a test database, this database is only used for the testing, we never test on the
live database. The test first deletes and recreates the database. After that it will
perform several unit tests to check if the database queries of the application are
working as intended.

• Next we test the Anastasis crypto API, it tests all the cryptographic functions
used in the API with unit tests. The most important part is that the recreation
of the keys and decryption works as intended.

• After the basic parts of the application are tested the client will test every request
in the Anastasis server API. For this we need the Taler Testing library. The

47

Taler testing library will start an instance of the Anastasis webserver and a GNU
Taler merchant service. The merchant service is needed to proccess the payment
operations. The testing library will now send a request to every end point of
the Anastasis REST API. It will check if every response of the REST API is as
intended.

• At the end the whole application flow is tested. For this we need to start a Anastasis
server, Taler merchant and Taler exchange instance. The library will now perform
a full secret split and secret recovery. This test is successful if the provided core
secret at the begin, matches the recovered core secret.

48

6. Business model
We are currently in the process of building a start-up for the Anastasis application. This
business model shows an overview how we want to build our start-up and how we want
to continue our work on the project.

6.1. Executive summary
Users of cryptography are frequently facing the challenge to secure their core secrets (pri-
vate keys), and the contemporary default of asking them to remember strong passphrases
is inadequate for mass adoption. The loss of such a core secret can cause severe damage
for a user. Our project was conceived as a solution to similar problems several privacy
enhancing software projects are facing today. Specifically, the Swiss Pretty Easy Privacy
project7, an E-Mail encryption solution which needs an easy way for users to recover
their private keys to avoid the loss of encrypted E-Mails. The GNU Taler team is build-
ing an electronic payment system and is facing an equivalent challenge: the European
Central Bank informed them about a requirement for electronic wallets denominated in
Euros to support password-less data recovery. We designed Anastasis to address this
common problem of cryptographic consumer products. Within our bachelor thesis we
could build a working prototype of the application. But this application is not a fin-
ished product. Within the thesis we only could implement rudimentary authentication
methods. To satisfy the requirements of our industry partners we need to have several
different authentication methods implemented. Additionally, the Anastasis environment
will need proper automatization. Specifically, monitoring of the integration with exter-
nal authentication providers, the correct operation of the backup mechanism and the
business logic. To make Anastasis ready for public usage we estimate the need of an
additional year of development. The resulting start-up would initially receive B2B rev-
enue from companies that need our solution for their cryptographic consumer product.
In addition to Taler and PEP we are in discussion with developers of crypto currencies
from Zug and Lausanne. Subsequently these contacts would evolve into distribution
channels, and Anastasis would eventually earn money directly from its users. Crypto-
graphic solutions which are not open to the public are not trustworthy. As seen lately
with the Crypto AG. Experts recommend to only use Free and Libre Open Source Soft-
ware (FLOSS) especially for cryptography. Therefore, Anastasis is licensed under the
Affero GPL which will prevent other companies from creating or operating proprietary
forks. Being first to market and thus the default provider in various consumer products
will be a key business advantage.

6.2. Market review and innovation potential
There are already some key recovery or key splitting solutions on the market. For ex-
ample, there is a solution from Coinbase. Coinbase is a global digital asset exchange
company, providing a venue to buy and sell digital currencies. Coinbase also uses wallets

7https://pep.foundation/

49

https://pep.foundation/

secured with private keys. To recover this private key the user has to provide a 12 words
recovery phrase. Coinbase now offers a solution to securely deposit this recovery phrase
onto the users Google Drive. The security here lies within the Google Account and the
password used to encrypt the security phrase [35]. The problem here is that this ap-
proach undermines confidentiality. It exchanges a hard to guess password with a shorter
and easier to guess password. The difficulty is to simultaneously assure availability and
confidentiality, instead of trading one for the other. By allowing citizens to simultane-
ously achieve confidentiality and availability we improve their ability to exercise their
right to informational self-determination.

Today information losses from security incidents are rampant, either because data
is exposed (loss of confidentiality) or because users lose their data because of lacking
backups (loss of availability). As seen in the study of the Global Data Protection Index
2018 [44], 76% of those interviewed had an availability incident. 1TB of data loss or 20
hours of downtime reportedly costs half a million dollars. On the other hand, loss of
confidential private data can result in fines under data protection regulation, as well as
a difficult to quantify loss of reputation. Prominent cases in which sometimes enormous
amounts of money have been gone useless by losing the key to the digital wallet clarify the
urgent need of a key recovery system like Anastasis. For example the case QuadrigaCX
exchange was heavily discussed in the media when the chief executive, Gerald Cotton,
unexpectedly died and left £145 million in a “cold wallet”. [6]

In some cases there is a workaround to recover a lost key, provided there is a security
hole in the digital wallet software that can be exploited, but it is far from user friendly
and also questions the confidentiality of data in such a system. In his article “’I Forgot
My PIN’: An Epic Tale of Losing $30,000 in Bitcoin” [45] Mark Frauenfelder, a former
editor at WIRED and the director of research at the Institute of the Future’s Blockchain
Futures Lab, writes about his experiences in losing and trying to recover his wallet key.

6.3. Business model canvas
6.3.1. Key partners

Our key partners for Anastasis are three entities. First the business partners, Taler
Systems SA and p≡p Foundation, with whom we could already make contracts and
wish to integrate our product. Second are the providers of Cloud services. To operate
Anastasis with minimal cost we need the service of these providers. These providers
can additionally provide us authentication services, this also minimizes the complexity
of our solution since we do not have to implement these services by ourselves. Such a
provider could be for example Amazon AWS, Azure, Google.

In addition to these industry partners, we also count on the continued support by
the BFH for hosting and mentoring. Prof. Dubius has already agreed to serve on our
advisory board, and Prof. Grothoff would be happy to serve as non-executive chairman
for the company.

50

6.3.2. Key activities

The main work of our start up is the completion of our software for commercial use.
This involves the integration of different authentication methods and the integration of
our application into the different consumer applications. Another key activity is the
maintenance and deployment of our service.

6.3.3. Key resources

Our developers need a device to work with, we agreed to the policy to “bring your own
device” this means the start-up does not have to invest in hardware. To operate our
application, we will need servers to provide our service, as previously mentioned we
would provide our service on a Cloud provider. For the timely further development of
our service and integration with various authentication providers, payment solutions and
applications needing key recovery, we see an initial need for at least two fulltime employ-
ees. These developers would also be responsible for the maintenance and deployment of
the application.

Additionally, the start-up needs a person who is responsible for the business of Anas-
tasis. This employee would be responsible to find new business partners and present our
application to investors. This employee might initially work only part-time. To be able
to properly launch the start-up, we are hoping to find a combination of investors and
grants.

6.3.4. Value propositions

As mentioned earlier there are many applications which need a key recovery system.
Anastasis is also a privacy friendly and transparent solution. Furthermore, Anastasis
will make sure that the application is user friendly and inexpensive.

6.3.5. Customer relationships

In the early stages of our start-up our customers are primary going to be business
customers like Taler Systems SA, p≡p Foundation, Fraunhofer AISEC and NymTech,
which all want to integrate our solution into their products. Thus, early on we will
likely pursue B2B sales, lining up businesses that would want to integrate Anastasis
with existing security products.

Once successful products exist in the market, our revenue should inherently shift to
a B2C model, as then customers will pay for the recovery service. We may then also
ourselves invest in integration of Anastasis with further software solutions to grow the
business, even in domains where there is no significant business partner. This will be
the case for applications where popular non-commercial solutions are freely available.
An example for this domain would be consumer software that enables disk encryption.

51

6.3.6. Customer segments

Our business customers will be primarily developers of security applications which need
a way to enable end-users to securely backup end-user key material.

End-users paying for the recovery service will be all users using privacy-enhancing
technologies, where the putting the user in charge of their data also burdens the user
with taking care of their private keys. Specific applications include payment services
including crypto-currencies and end-to-end encrypted communication services.

6.3.7. Cost structure

The main cost for our start-up is the salary of our employees. We need to have two
or more fulltime employees for the development and one part time employee for the
business development. Additional costs for the start-up are the costs for registering a
company. To provide Anastasis as a service, we expect to make use of existing public
Cloud services, which also cost a little bit.

6.3.8. Revenue streams

In the beginning, businesses like Taler Systems SA will pay us to operate an Anastasis
server and to help them integrate our protocol with their software. Once we have many
end-users utilizing Anastasis, they will have to pay directly for the service. The users
have to pay a subscription fee and possibly additional fees for expensive recovery op-
erations. For example a user might pay 0.10 CHF per month for the subscription and
0.01 CHF for each encrypted truth upload. Additionally, the user would have to pay for
expensive authentication methods like video identification.

6.4. Project plan
Our objective for the first year is for Anastasis to implement several authentication ser-
vices, have a working cloud deployment with good monitoring, and to be integrated with
various cryptographic consumer products (Figure 16). We plan to hire one developer
for the integration with external authentication providers and monitoring of our cloud
deployment, and a second one to focus on the integration of Anastasis with consumer
products. Key milestones are the various integrations of the different authentication
methods, the integration of cryptographic consumer products, and the deployment of
our application. Additionally, we would always look out for new customers and clients
who could benefit from Anastasis.

52

Figure 16: Business project plan

53

7. Conclusion and outlook
Anastasis is a privacy-preserving and robust technical solution to the problem of key
recovery. Open challenges remain in particular with respect to usability, as the user
experience — and in particular convincing the users that their private data truly remains
private with Anastasis — will be crucial for commercial success. While we have started to
make plans for a graphical user interface, it was not possible to conduct actual usability
studies in the scope of the thesis.

Overall, the thesis was an interesting experience for us. We learned much about
software development and had our first successful B2B interactions. The Anastasis
project will not be finished at the end of the thesis, but instead we plan to build a
start-up to be able to launch a proper product around our work on Anastasis.

54

A. REST API documentation
The server api is a RESTful API which has the following endpoints.

Obtain Salt
GET /salt
Obtain the salt used by the escrow provider. Different providers will use different high-
entropy salt values. The resulting provider salt is then used in various operations to
ensure cryptographic operations differ by provider. A provider must never change its
salt value.
Response:
Returns a ”SaltResponse”.

interface SaltResponse {
// salt value, at least 128 bits of entropy
server_salt: string;

}

Obtain terms of service
GET /terms
Obtain the terms of service provided by the escrow provider.
Response:
Returns an EscrowTermsOfServiceResponse.

interface EscrowTermsOfServiceResponse {

// minimum supported protocol version
min_version: number;

// maximum supported protocol version
max_version: number;

// supported authentication methods
auth_methods: AuthenticationMethod[];

// Payment required to maintain an account to store
// policy documents for a month.
// Users can pay more, in which case the storage time
// will go up proportionally.
monthly_account_fee: Amount;

// Amount required per policy upload. Note that the amount is NOT

55

// charged additionally to the monthly_storage_fee. Instead,
// when a payment is made, the amount is divided by the policy_upload_fee
// (and rounded down) to determine how many uploads can be made
// under the associated payment identifier.
policy_upload_ratio: Amount;

// maximum policy upload size supported
policy_size_limit_in_bytes: number;

// maximum truth upload size supported
truth_size_limit_in_bytes: number;

// how long until the service expires deposited truth
// (unless refreshed via another POST)?
truth_expiration: RelativeTime;

// Payment required to upload truth. To be paid per upload.
truth_upload_fee: Amount;

// Limit on the liability that the provider is offering with
// respect to the services provided.
liability_limit: Amount;

// HTML text describing the terms of service in legalese.
// May include placeholders like "${truth_upload_fee}" to
// reference entries in this response.
tos: string;

}

interface AuthenticationMethod {
// name of the authentication method
name: string;

// Fee for accessing truth using this method
usage_fee: Amount;

}

Manage Policy
This API is used by the Anastasis client to deposit or request encrypted recovery doc-
uments with the escrow provider. Generally, a client will deposit the same encrypted
recovery document with each escrow provider, but provide different truth to each escrow
provider.

56

Operations by the client are identified and authorized by $ACCOUNT_PUB, which
should be kept secret from third parties. $ACCOUNT_PUB should be an account pub-
lic key using the Crockford base32-encoding.

GET /policy/$ACCOUNT_PUB[?version=$NUMBER]

Get the customer’s encrypted recovery document. If “version” is not specified, the server
returns the latest available version. If “version” is specified, returns the policy with the
respective “version”. The response must begin with the nonce and an AES-GCM tag
and continue with the ciphertext. Once decrypted, the plaintext is expected to contain:

• the escrow policy

• the separately encrypted master key

Status Codes:

• 200 OK – The escrow provider responds with an EncryptedRecoveryDocument
object.

• 304 Not modified – The client requested the same ressource it already knows.

• 400 Bad request – The $ACCOUNT_PUB is not an EdDSA public key.

• 402 Payment Required – The account’s balance is too low for the specified opera-
tion. See the Taler payment protocol specification for how to pay.

• 403 Forbidden – The required account signature was invalid.

• 404 Not Found – The requested resource was not found.

Note that the key shares required to decrypt the master public key are not included,
as for this the client needs to obtain authorization. The policy does provide sufficient
information for the client to determine how to authorize requests for truth.

The client MAY provide an “If-None-Match” header with an Etag. In that case, the
server MUST additionally respond with an “304” status code in case the resource matches
the provided Etag.

Anastasis-Version: $NUMBER — The server must return actual version of the encrypted
recovery document via this header. If the client specified a version number in the header
of the request, the server must return that version. If the client did not specify a ver-
sion in the request, the server returns latest version of the EncryptedRecoveryDocument.

Etag: Set by the server to the Base32-encoded SHA512 hash of the body. Used for

57

caching and to prevent redundancies. The server MUST send the Etag if the status
code is 200 OK.

If-None-Match: If this is not the very first request of the client, this contains the Etag-
value which the client has reveived before from the server. The client SHOULD send this
header with every request (except for the first request) to avoid unnecessary downloads.

Anastasis-Account-Signature: The client must provide Base-32 encoded EdDSA sig-
nature over hash of body with $ACCOUNT_PRIV, affirming desire to download the
requested encrypted recovery document. The purpose used MUST be TALER_SIGNA-
TURE_ANASTASIS_POLICY_DOWNLOAD (1401).

POST /policy/$ACCOUNT_PUB
Upload a new version of the customer’s encrypted recovery document. While the docu-
ment’s structure is described in JSON below, the upload should just be the bytestream
of the raw data (i.e. 32 bytes nonce followed by 16 bytes tag followed by the encrypted
document). If request has been seen before, the server should do nothing, and otherwise
store the new version. The body must begin with a nonce, an AES-GCM tag and con-
tinue with the ciphertext. The format is the same as specified for the response of the
GET method. The Anastasis server cannot fully validate the format, but MAY impose
minimum and maximum size limits.

Status Codes:

• 204 No Content – The encrypted recovery document was accepted and stored.
“Anastasis-Version” indicate what version was assigned to this encrypted recovery
document upload by the server.

• 304 Not modified – The same encrypted recovery document was previously ac-
cepted and stored. “Anastasis-Version” header incidates what version was previ-
ously assigned to this encrypted recovery document.

• 400 Bad request – The $ACCOUNT_PUB is not an EdDSA public key or manda-
tory headers are missing. The response body MUST elaborate on the error using
a Taler error code in the typical JSON encoding.

• 402 Payment Required – The account’s balance is too low for the specified oper-
ation. See the Taler payment protocol specification for how to pay. The response
body MAY provide alternative means for payment.

• 403 Forbidden – The required account signature was invalid. The response body
may elaborate on the error.

• 409 Conflict – The If-Match Etag does not match the latest prior version known
to the server.

58

• 413 Request Entity Too Large – The upload is too large or too small. The response
body may elaborate on the error.

If-Match: Unless the client expects to upload the first encrypted recovery document
to this account, the client should provide an Etag matching the latest version already
known to the server. If this header is present, the server MUST refuse the upload if the
latest known version prior to this upload does not match the given Etag.
If-None-Match: This header must be present and set to the SHA512 hash (Etag) of the
body by the client. The client should also set the “Expect: 100-Continue” header and
wait for “100 continue” before uploading the body. The server MUST use the Etag to
check whether it already knows the encrypted recovery document that is about to be
uploaded. The server MUST refuse the upload with a “304” status code if the Etag
matches the latest version already known to the server.
Anastasis-Policy-Signature: The client must provide Base-32 encoded EdDSA signature
over hash of body with $ACCOUNT_PRIV, affirming desire to upload an encrypted
recovery document.
Payment-Identifier: Base-32 encoded 32-byte payment identifier that was included in
a previous payment (see 402 status code). Used to allow the server to check that the
client paid for the upload (to protect the server against DoS attacks) and that the client
knows a real secret of financial value (as the kdf_id might be known to an attacker). If
this header is missing in the client’s request (or the associated payment has exceeded the
upload limit), the server must return a 402 response. When making payments, the server
must include a fresh, randomly-generated payment-identifier in the payment request.

interface EncryptedRecoveryDocument {
// Nonce used to compute the (iv,key) pair for encryption
// of the encrypted_compressed_recovery_document.
nonce: [32]; //bytearray

// Authentication tag
aes_gcm_tag: [16]; //bytearray

// Variable-size encrypted recovery document. After decryption ,
// this contains a gzip compressed JSON-encoded RecoveryDocument.
// The nonce of the HKDF for this encryption must include the
// string "ERD".
// bytearray of undefined length
encrypted_compressed_recovery_document: [];

}

interface RecoveryDocument {

59

// Account identifier at backup provider, AES-encrypted with
// the (symmetric) master_key , i.e. an URL
// https://sync.taler.net/$BACKUP_ID and
// a private key to decrypt the backup. Anastasis is oblivious
// to the details of how this is ultimately encoded.
backup_account: []; //bytearray of undefined length

// List of escrow providers and selected authentication method
methods: EscrowMethod[];

// List of possible decryption policies
policy: DecryptionPolicy[];

}

interface EscrowMethod {
// URL of the escrow provider
// (including possibly this Anastasis server)
provider_url : string;

// Name of the escrow method (e.g. security question, SMS etc.)
escrow_method: string;

// truth_seed of the escrow method (see /truth/ API below).
truth_seed: [32]; //bytearray

// Key used to encrypt the Truth this EscrowMethod is related to.
// Client has to provide this key to the server when using /truth/
truth_encryption_key: [32]; //bytearray

// Salt used to encrypt the truth on the Anastasis server.
truth_salt: [32]; //bytearray

// The challenge to give to the user (i.e. the security question
// if this is challenge -response).
// (Q: as string in base32 encoding?)
// (Q: what is the mime-type of this value?)
//
// For some methods, this value may be absent.
//
// The plaintext challenge is not revealed to the
// Anastasis server.
challenge: []; //bytearray of undefined length

}

60

interface DecryptionPolicy {
// Salt included to encrypt master key share when
// using this decryption policy.
policy_salt: [32]; //bytearray

// Master key, AES-encrypted with key derived from
// salt and keyshares revealed by the following list of
// escrow methods identified by the truth_seeds.
encrypted_master_key: [32]; //bytearray

// List of escrow methods identified by their truth_seed.
truth_seeds: []; //array of truth_seed

}

Manage Truth
This API is used by the Anastasis client to deposit truth or request a (encrypted) key
share with the escrow provider.

An escrow method specifies an Anastasis provider and how the user should authorize
themself. The truth API allows the user to provide the (encrypted) key share to the re-
spective escrow provider, as well as auxiliary data required for such an respective escrow
method.

Operations by the client are identified and authorized by $TRUTH_PUB, which should
be kept secret from third parties. $TRUTH_PUB should be a public key using the
Crockford base32-encoding.

An Anastasis-server may store truth for free for a certain time period, or charge per
truth operation using GNU Taler.

POST /truth/$TRUTH_PUB
Upload a TruthUploadRequest-Object according to the policy the client created before
(see RecoveryDocument). If request has been seen before, the server should do nothing,
and otherwise store the new object.

Status Codes:

• 204 No content – Truth stored successfully.

• 304 Not modified – The same truth was previously accepted and stored under this
$TRUTH_PUB. The Anastasis server must still update the expiration time for
the truth when returning this response code.

61

• 402 Payment Required – This server requires payment to store truth per item. See
the Taler payment protocol specification for how to pay. The response body MAY
provide alternative means for payment.

• 409 Conflict – The server already has some truth stored under this TRUTH_PUB.
The client should check that it is generating $TRUTH_PUB with enough entropy.

• 412 Precondition Failed – The selected authentication method is not supported on
this provider.

Details:

interface TruthUploadRequest {
// Contains the information of an interface EncryptedKeyShare ,
// but simply as one binary block (in Crockford Base32
// encoding for JSON).
key_share_data: []; //bytearray

// Key share method, i.e. "security question", "SMS", "e-mail", ...
method: string;

// Nonce used to compute the (iv,key) pair for encryption of the
// encrypted_truth.
nonce: [32]; //bytearray

// Signature over the key_share signed with TRUTH_PRIV.
key_share_signature: EddsaSignature;

// Variable-size truth. After decryption ,
// this contains the ground truth, i.e. H(challenge answer),
// phone number, e-mail address, picture, fingerprint , ...
// **base32 encoded**.
//
// The nonce of the HKDF for this encryption must include the
// string "ECT".
encrypted_authentication_data: []; //bytearray

// Signature over the key_share signed with TRUTH_PRIV.
authentication_data_signature: EddsaSignature;

// mime type of truth, i.e. text/ascii, image/jpeg, etc.
truth_mime: string;

}

GET /truth/$TRUTH_PUB[?response=$RESPONSE]

62

Get the stored encrypted key share. If $RESPONSE is specified by the client, the
server checks if $RESPONSE matches the expected response specified before within the
TruthUploadRequest (see encrypted_truth). Also, the user has to provide the correct
truth_encryption_key with every get request (see below). When $RESPONSE is cor-
rect, the server responses with the encrypted key share. The encrypted key share is
returned simply as a byte array and not in JSON format.

Status Codes:

• 200 OK – EncryptedKeyShare is returned in body (in binary).

• 202 Accepted – The escrow provider will respond out-of-band (i.e. SMS). The
body may contain human-readable instructions on next steps.

• 303 See Other – The provider redirects for authentication (i.e. video identifica-
tion/WebRTC). If the client is not a browser, it should launch a browser at the
URL given in the “Location” header and allow the user to re-try the operation
after successful authorization.

• 402 Payment Required – The service requires payment for access to truth. See
the Taler payment protocol specification for how to pay. The response body MAY
provide alternative means for payment.

• 403 Forbidden – The server requires a valid “response” to the challenge associated
with the $TRUTH_PUB.

• 404 Not Found – The server does not know any truth under the given TRUTH_PUB.

• 503 Service Unavailable – Server is out of Service.

Truth-Decryption-Key: Key used to encrypt the truth (see encrypted_truth within
TruthUploadRequest) and which has to provided by the user. The key is stored with
the according EscrowMethod. The server needs this key to get the info out of TruthU-
ploadRequest needed to verify the $RESPONSE.
authentication_data_signature: The client must provide Base-32 encoded EdDSA
signature over the hash of the encrypted_authentication_data with $TRUTH_PRIV.
key_share_signature: The client must provide Base-32 encoded EdDSA signature
over hash of the encrypted_key_key_share with $TRUTH_PRIV.
Details:

interface EncryptedKeyShare {
// Nonce used to compute the decryption (iv,key) pair.
nonce_i: [32]; //bytearray

// Encrypted key-share in base32 encoding.
// After decryption , this yields a KeyShare. Note that

63

// the KeyShare MUST be encoded as a fixed-size binary
// block (instead of in JSON encoding).
//
// HKDF for the key generation must include the
// string "eks" as salt. Depending on the method,
// the HKDF may additionally include
// bits from the response (i.e. some hash over the
// answer to the security question)
encrypted_key_share_i: [32]; //bytearray

}

interface KeyShare {
// Key material to concatenate with policy_salt
// and KDF to derive the key to decrypt the master key.
key_share: [32]; //bytearray

// Signature over the key_share signed with TRUTH_PRIV.
account_sig: EddsaSignature;

}

64

B. Work journal

Meeting 20.02.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
It was the first meeting of the Bachelor’s thesis. The main focus was on the planing of
the project and discussing the next steps. The conclusion was there is a lot of work to
do and we need to focus from the beginning.

Next Steps
The next meeting will be at the 27.2. Until this meeting drafts of several project doc-
uments should be completed. Task schedule, project document, work journal, business
plan, abstract, motivation. Additionally a draft for the BRIDGE funding proposal should
be written.

Meeting 27.02.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
The main topic of the meeting was the BRIDGE proposal which is due at the 9th of
March. Additionally we discussed the documents and plan we created.

Next Steps
The next steps are the completion of the BRIDGE proposal.

Meeting 05.03.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
In this meeting the main topic was the finalization of the BRIDGE proposal. We also
discussed the related work and Business model of Anastasis. Through the extensive work
on the BRIDGE proposal the development has not continued very fast. But we already
could write key parts for the Bachelor thesis.

65

Next Steps
Next is the completion and delivery of the BRIDGE proposal.

Meeting 12.03.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
The BRIDGE proposal was sent and we can now focus on the development. We did not
estimate that the proposal would be this time consuming. We are now a bit behind our
task schedule.

Next Steps
Completion of the Anastasis Client API tests and start of the implementation of the
crypto library.

Meeting 19.03.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We ran into problems while testing the Anastasis client API, the development is slow at
the moment because the bugfixing takes a lot of time. We also have made some design
mistakes in the crypto API which needed to be fixed.

Next Steps
Completion of the Anastasis Client API tests and continue on the implementation of the
crypto library.

Meeting 26.03.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We ran into a lot of problems and decided to make more frequent meetings. We need to
fix some design issues, the imports of the different files are done wrong. Additionally we
need to be more clear with the names. We need to focus more on the implementation
and be more precise with the documentation.

66

Next Steps
Implementation of the Crypto library, fix issues mentioned.

Meeting 30.03.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We could fix the issues from the last meetings and are now in the development of the
crypto library. We had some problems with pointers which we could discuss and fix. We
are happy that we can see progress.

Next Steps
Implementation of the Crypto libarary, finishing API.

Meeting 02.04.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
Dennis is still fixing issues with the API communication, the process is very time con-
suming and we are pretty behind. Dominik was sick for some days and was not able
to work for the project. We are now pretty behind our task schedule and need to work
harder.

Next Steps
Implementation of the Crypto library, finishing API.

Meeting 06.04.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We could finally fix the API’s and can now focus on the planned components. We also
found some bugs in payment process we need to fix.

Next Steps
Implementation Crypto library and testing

67

Meeting 09.04.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We found some errors in our specification regarding the Key Shares. We are currently
still in the development of Crypto library tests. The development is very slow because
we have some problems with the pointers in C.

Next Steps
Implementation Crypto library tests, work on Anastasis client

Meeting 13.04.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We are still in the development of the Crypto library tests. The problems are mostly the
handling of the data. We had some problems with the datatypes and the conversions.

Next Steps
Implementation Crypto library testing, work on the Anastasis client.

Meeting 16.04.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We could not finish the crypto library jet and had problems with the json objects we
need to handle inside the crypto library. The development of the Anastasis client is also
slow, since it is a very complex part which needs to integrate all other components.

Next Steps
Finish Crypto library testing, implementation Anastasis client

Meeting 24.04.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

68

Reflection
We still have some bugs in the crypto library. We should focus that the application is not
crashing if something unexpected happens, the application should continue. Additionally
there were some security issues in the code we need to fix. The development of this
component is very complex and needs a lot of time, we hope that we soon can finish the
crypto library. Also the development of the Anastasis client is finished we can now start
with the testing.

Next Steps
Finish Crypto library testing, implementation Anastasis client tests

Meeting 27.04.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
After some final optimization the crypto library of Anastasis is finished. We can now
focus on the tests of the client API. This will show if the whole flow of the application
works as intended.

Next Steps
Implementation Anastasis client tests

Meeting 30.04.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
The testing of the Anastasis client API is progressing slowly. We could find alot of bugs
in the other components we were not able to see with our previous testing. We needed to
fix some of the protocol flows. We hope that we can finish the client as soon as possible
since we also need to implement the authentication procedure and the command line
application.

Next Steps
Implementation Anastasis client tests and start working on the authentication backend

69

Meeting 04.05.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We continued the work on the Anastasis client API and the authentication backend, we
still found problems in the other components. To finish the Anastasis client we will need
the authentication backend. So we decided to implement the most basic authentication,
secure question. We also still have some issues with our naming conventions which are
not always clear.

Next Steps
Finish implementation Anastasis client tests and authentication backend

Meeting 07.05.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We could finish the authentication backend and now need to implement the client logic
for the authentication. We also need to finish the client tests. We have roughly one
month left to finish the project, we started to think that we can’t develop a complex
authentication method. We planned that we first will finish the rest and afterwards look
if we have time to implement a different authentication method.

Next Steps
Finish client API and tests

Meeting 11.05.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
In the last couple days we could make good progress we managed to nearly finish the
Anastasis client API tests. For the most part the components are working. We think that
we can finish this project within the time without the complex authentication method.

Next Steps
Finish client API and tests

70

Meeting 14.05.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We are still behind in our development. Nevertheless, industry interest suggests we
should prepare a business pitch.

Next Steps
finish client API

Meeting 18.05.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
The last couple of days were quite stressful but we manged to complete the Anastasis
client tests. This means our application flow is working. This is a huge relief.

Next Steps
Finish business pitch, start developing Anastasis CLI, write bachelor book, create bach-
elor poster

Meeting 21.05.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
The development of the Anastasis CLI went very fast, since all the other components
are working correctly. The Anastasis splitter and assembler are nearly finished. We
also created the bachelor book article and the poster. Both of these still need some
adjustments.

Next Steps
Finish Anastasis splitter and assembler, start to finish documentation, fix book and
poster

71

Meeting 28.05.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
We nearly could finish the Anastasis CLI and can now start to focus on the documenta-
tion. We already have a lot of documentation available which needs to be put together
in one document. Additionally the book abstract and the poster are finished and we
could deliver them.

Next Steps
Work on documentation

Meeting 04.06.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
There is only one week left, our document is nearly finished. We discussed which last
sections need to be added. The thesis overall is now in a nearly finished state, there are
some minor problems with the illustrations and the text which should be easy fixed.

Next Steps
Fix illustrations, rework client client documentation

Meeting 08.06.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
This is the second last meeting of our thesis. We discussed the last changes which need
to be done. The text is completed, we decided that we could add more illustrations to
give a better understanding of the document. We are very proud of our work and think
that we have done a good job.

Next Steps
Add illustration for key flow, rework some minor inconsistencies

72

Meeting 11.06.2020
Present at the Meeting were: Dominik Meister, Dennis Neufeld and Christian Grothoff.

Reflection
This was the last meeting of our bachelor thesis. We fixed the last pieces in the docu-
mentation and sent the thesis. We are very happy with the final result.

Next Steps
-

73

Glossary
account key A public-private key pair used to sign and authenticate the encrypted

policy document upload.

authentication method An authentication method specifies how the user should con-
vince the escrow provider that he is authorized to get a key share.

challenge A challenge is a data structure which holds information about a user authen-
tication for a escrow provider.

core secret The core secret is the data which the user wants to protect with Anastasis.

escrow provider An escrow provider is referred to servers which operate Anastasis.

kdf id The kdf id is an Argon2 hash over the user’s unforgettable password.

key share A key share is a random byte sequence which is combined with other key
shares to create a policy key.

master key The master key is a randomly generated key which is used to encrypt the
user’s core secret.

policy A policy is a list of challenges which need to be solved to recover the core secret.

policy key Every policy holds a separate policy key which is built through the combi-
nation of the key shares. The policy key is used to encrypt the master key.

recovery document A data structure which contains a set of policies and challenges.

truth A truth is a data structure which defines how a user authentication is performed,
it also contains the key share which is released upon successful authentication.

truth key A public-private key pair used to sign and authenticate the truth upload.

truth seed A nonce used to generate the key material to sign the truth upload.

74

References
[1] B. Jérôme, B. D. Angelina, B. H. Esther, and K. ZH, “Ahv-nummer als ein-

heitlicher, organisationsübergreifender personenidentifikator,” 2015.
[2] S. Garfinkel, PGP: pretty good privacy. ” O’Reilly Media, Inc.”, 1995.
[3] (2020). “Welcome to p�p documentation!” pEp Security SA, [Online]. Available:

https://www.pep.security/docs/ (visited on 06/06/2020).
[4] G. Caronni, “Walking the web of trust,” in Proceedings IEEE 9th International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WET ICE 2000), IEEE, 2000, pp. 153–158.

[5] Y. Liu, R. Li, X. Liu, J. Wang, L. Zhang, C. Tang, and H. Kang, “An efficient
method to enhance bitcoin wallet security,” in 2017 11th IEEE International Con-
ference on Anti-counterfeiting, Security, and Identification (ASID), IEEE, 2017,
pp. 26–29.

[6] A. Cuthbertson. (2019). “Bitcoin: Millions of dollars of cryptocurrency ’lost’ af-
ter man dies with only password,” INDEPENDENT, [Online]. Available: https:
//www.independent.co.uk/life-style/gadgets-and-tech/news/bitcoin-
exchange-quadrigacx-password-cryptocurrency-scam-a8763676.html (vis-
ited on 03/07/2020).

[7] (2020). “Bip 32 - hierarchical deterministic wallets,” Bitcoin, [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0032/derivation.png
(visited on 06/06/2020).

[8] S. Bajikar, “Trusted platform module (tpm) based security on notebook pcs-white
paper,” Mobile Platforms Group Intel Corporation, vol. 1, p. 20, 2002.

[9] S. P. Vadhan et al., “Pseudorandomness,” Foundations and Trends® in Theoretical
Computer Science, vol. 7, no. 1–3, pp. 1–336, 2012.

[10] J. B. Nielsen, “A threshold pseudorandom function construction and its applica-
tions,” in Annual International Cryptology Conference, Springer, 2002, pp. 401–
416.

[11] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,”
J. ACM, vol. 33, no. 4, pp. 792–807, Aug. 1986, issn: 0004-5411. doi: 10.1145/
6490.6503. [Online]. Available: https://doi.org/10.1145/6490.6503.

[12] B. Preneel, “The state of cryptographic hash functions,” in Lectures on Data Se-
curity: Modern Cryptology in Theory and Practice, I. B. Damgård, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, p. 158, isbn: 978-3-540-48969-6. doi:
10.1007/3-540-48969-X_8. [Online]. Available: https://doi.org/10.1007/3-
540-48969-X_8.

[13] R. Sobti and G. Geetha, “Cryptographic hash functions: A review,” International
Journal of Computer Science Issues (IJCSI), vol. 9, no. 2, p. 462, 2012.

75

https://www.pep.security/docs/
https://www.independent.co.uk/life-style/gadgets-and-tech/news/bitcoin-exchange-quadrigacx-password-cryptocurrency-scam-a8763676.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/bitcoin-exchange-quadrigacx-password-cryptocurrency-scam-a8763676.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/bitcoin-exchange-quadrigacx-password-cryptocurrency-scam-a8763676.html
https://github.com/bitcoin/bips/blob/master/bip-0032/derivation.png
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1007/3-540-48969-X_8
https://doi.org/10.1007/3-540-48969-X_8
https://doi.org/10.1007/3-540-48969-X_8

[14] S. Ramanujam and M. Karuppiah, “Designing an algorithm with high avalanche
effect,” IJCSNS International Journal of Computer Science and Network Security,
vol. 11, no. 1, pp. 106–111, 2011.

[15] S. Gueron, S. Johnson, and J. Walker, “Sha-512/256,” in 2011 Eighth International
Conference on Information Technology: New Generations, IEEE, 2011, pp. 354–
358.

[16] M. Bellare, R. Canetti, and H. Krawczyk, “Message authentication using hash
functions: The hmac construction,” RSA Laboratories’ CryptoBytes, vol. 2, no. 1,
pp. 12–15, 1996.

[17] H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf scheme,”
in Annual Cryptology Conference, Springer, 2010, pp. 631–648.

[18] S. M. Trimberger, Field-programmable gate array technology. Springer Science &
Business Media, 2012.

[19] R. U. Madurawe, Alterable application specific integrated circuit (asic), US Patent
7,064,579, Jun. 2006.

[20] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New generation of memory-
hard functions for password hashing and other applications,” in 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), IEEE, 2016, pp. 292–302.

[21] M. Stamp, “Once upon a time-memory tradeoff,” San Jose State University, De-
partment of Computer Science, 2003.

[22] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[23] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable se-
cret sharing,” in Annual international cryptology conference, Springer, 1991, ch. 0,
pp. 129–140.

[24] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,” in
28th Annual Symposium on Foundations of Computer Science (sfcs 1987), IEEE,
1987, pp. 427–438.

[25] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret
sharing,” in Annual international cryptology conference, Springer, 1991, ch. 5.2,
pp. 129–140.

[26] A. Ometov, S. Bezzateev, N. Makitalo, S. Andreev, T. Mikkonen, and Y. Kouch-
eryavy, “Multi-factor authentication: A survey,” Cryptography, vol. 2, no. 1, p. 1,
2018.

[27] S. Z. Syed Idrus, E. Cherrier, C. Rosenberger, and J.-J. Schwartzmann, “A review
on authentication methods,” Australian Journal of Basic and Applied Sciences,
vol. 7, no. 5, pp. 95–107, 2013. [Online]. Available: https : / / hal . archives -
ouvertes.fr/hal-00912435.

[28] M. Just, “Designing and evaluating challenge-question systems,” IEEE Security &
Privacy, vol. 2, no. 5, pp. 32–39, 2004.

76

https://hal.archives-ouvertes.fr/hal-00912435
https://hal.archives-ouvertes.fr/hal-00912435

[29] C. Mulliner, R. Borgaonkar, P. Stewin, and J.-P. Seifert, “Sms-based one-time
passwords: Attacks and defense,” in International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, Springer, 2013, pp. 150–159.

[30] K. Rieck, P. Stewin, and J.-P. Seifert, Detection of Intrusions and Malware, and
Vulnerability Assessment: 10th International Conference, DIMVA 2013, Berlin,
Germany, July 18-19, 2013. Proceedings. Springer, 2013, vol. 7967.

[31] (2020). “Forgot password cheat sheet,” OWASP Foundation, [Online]. Available:
https : / / cheatsheetseries . owasp . org / cheatsheets / Forgot _ Password _
Cheat_Sheet.html (visited on 06/05/2020).

[32] N. Pohlmann, J.-H. Frintrop, R. Widdermann, and T. Ziegler, “Wenn der softbot
menschliche identität bestätigt. videoident-verfahren ii: Die technik,” 2017.

[33] E. Pagnin and A. Mitrokotsa, “Privacy-preserving biometric authentication: Chal-
lenges and directions,” Security and Communication Networks, vol. 2017, 2017.

[34] S. Krempl. (2014). “Ccc-tüftler hackt merkels iris und von der leyens fingerab-
druck,” heise online, [Online]. Available: https://www.heise.de/security/
meldung/31C3-CCC-Tueftler-hackt-Merkels-Iris-und-von-der-Leyens-
Fingerabdruck-2506929.html (visited on 03/07/2020).

[35] (2020). “Backup your encrypted private keys on google drive and icloud with
coinbase wallet,” Coinbase, [Online]. Available: https://blog.coinbase.com/
backup-your-private-keys-on-google-drive-and-icloud-with-coinbase-
wallet-3c3f3fdc86dc (visited on 06/06/2020).

[36] E. B. Parag Chatterjee and A. Nath, Applied Approach to Privacy and Security
for the Internet of Things. IGI Global, in print.

[37] M. Marlinspike, “Ssl and the future of authenticity,” Black Hat USA, vol. 6, 2011.
[38] S. Josefsson and I. Liusvaara, “Edwards-curve digital signature algorithm (eddsa),”

in Internet Research Task Force, Crypto Forum Research Group, RFC, vol. 8032,
2017.

[39] S. Heron, “Advanced encryption standard (aes),” Network Security, vol. 2009,
no. 12, pp. 8–12, 2009.

[40] (2020). “Gnu taler: Features,” Taler Systems SA, [Online]. Available: https://
taler.net/en/features.html (visited on 06/02/2020).

[41] (2020). “Postgresql: The world’s most advanced open source relational database,”
The PostgreSQL Global Development Group, [Online]. Available: https://www.
postgresql.org/ (visited on 06/02/2020).

[42] (2020). “Libcurl - the multiprotocol file transfer library,” Curl, [Online]. Available:
https://curl.haxx.se/libcurl/ (visited on 06/02/2020).

[43] (2020). “Gnu libmicrohttpd,” GNU project, [Online]. Available: https://www.
gnu.org/software/libmicrohttpd/? (visited on 06/02/2020).

77

https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://www.heise.de/security/meldung/31C3-CCC-Tueftler-hackt-Merkels-Iris-und-von-der-Leyens-Fingerabdruck-2506929.html
https://www.heise.de/security/meldung/31C3-CCC-Tueftler-hackt-Merkels-Iris-und-von-der-Leyens-Fingerabdruck-2506929.html
https://www.heise.de/security/meldung/31C3-CCC-Tueftler-hackt-Merkels-Iris-und-von-der-Leyens-Fingerabdruck-2506929.html
https://blog.coinbase.com/backup-your-private-keys-on-google-drive-and-icloud-with-coinbase-wallet-3c3f3fdc86dc
https://blog.coinbase.com/backup-your-private-keys-on-google-drive-and-icloud-with-coinbase-wallet-3c3f3fdc86dc
https://blog.coinbase.com/backup-your-private-keys-on-google-drive-and-icloud-with-coinbase-wallet-3c3f3fdc86dc
https://taler.net/en/features.html
https://taler.net/en/features.html
https://www.postgresql.org/
https://www.postgresql.org/
https://curl.haxx.se/libcurl/
https://www.gnu.org/software/libmicrohttpd/?
https://www.gnu.org/software/libmicrohttpd/?

[44] (2018). “Global data protection index 2018 – key findings,” Dell EMC., [On-
line]. Available: https://www.delltechnologies.com/content/dam/uwaem/
production-design-assets/en/gdpi/assets/infographics/dell-gdpi-vb-
key-findings-deck.pdf) (visited on 03/07/2020).

[45] M. Frauenfelder. (2017). “I forgot my pin’: An epic tale of losing $30,000 in bitcoin,”
WIRED, [Online]. Available: https://www.wired.com/story/i-forgot-my-pin-
an-epic-tale-of-losing-dollar30000-in-bitcoin/ (visited on 03/07/2020).

78

https://www.delltechnologies.com/content/dam/uwaem/production-design-assets/en/gdpi/assets/infographics/dell-gdpi-vb-key-findings-deck.pdf)
https://www.delltechnologies.com/content/dam/uwaem/production-design-assets/en/gdpi/assets/infographics/dell-gdpi-vb-key-findings-deck.pdf)
https://www.delltechnologies.com/content/dam/uwaem/production-design-assets/en/gdpi/assets/infographics/dell-gdpi-vb-key-findings-deck.pdf)
https://www.wired.com/story/i-forgot-my-pin-an-epic-tale-of-losing-dollar30000-in-bitcoin/
https://www.wired.com/story/i-forgot-my-pin-an-epic-tale-of-losing-dollar30000-in-bitcoin/

	Introduction
	Principles
	Approach
	Use cases
	Encrypted email communication
	Digital currencies and payment solutions
	Password managers
	Hard drive encryption

	Project management
	Related work
	Cryptographic primitives
	Pseudo-randomness
	Hash function
	HMAC
	HKDF
	Argon2

	Secret sharing
	Shamir's secret sharing
	Verifiable secret sharing
	Distributed key generation

	Authentication
	Password authentication
	Secure question
	SMS authentication
	E-mail authentication
	VideoIdent
	PostIdent
	Biometric authentication

	Existing solutions for key recovery
	Coinbase
	MIDATA

	Design
	Overview
	Adversary model
	Encryption of the core secret
	The recovery document
	Identity-derived encryption
	Authenticity of recovery documents
	Account signatures
	Authenticity of truth
	Availability considerations

	Implementation
	System architecture
	Server architecture
	Database
	Authentication methods

	Client architecture
	Crypto API
	Client API
	Service API

	Application flow
	Secret splitting
	Secret recovery

	Client Application Command Line Interface (CLI)
	Anastasis splitter
	Anastasis assembler

	Libraries
	GNU Taler
	PostgreSQL
	Libcurl
	GNU Libmicrohttpd

	Testing

	Business model
	Executive summary
	Market review and innovation potential
	Business model canvas
	Key partners
	Key activities
	Key resources
	Value propositions
	Customer relationships
	Customer segments
	Cost structure
	Revenue streams

	Project plan

	Conclusion and outlook
	REST API documentation
	Work journal
	Glossary
	References

