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Abstract

GNU Taler is an intuitive, fast and socially responsible digital payment system imple-
mented as free software. While preserving the customers privacy, GNU Taler is still com-
pliant to regulations.

The goal of this thesis is to improve Taler’s performance and provide cipher agility by
adding support for Schnorr’s blind signatures. To achieve this goal, the current state in
research for Schnorr signatures needs to be analyzed. After choosing a signature scheme,
it has to be integrated into the Taler protocols. Besides implementing the redesigned pro-
tocols in Taler, an implementation of the cryptographic routines is needed.

The paper ”Blind Schnorr Signatures and Signed ElGamal Encryption in theAlgebraic Group
Model” [FPS19] from 2019 (updated in 2021) introducing Clause Blind Schnorr Signatures
is used as theoretical basis for our improvements. The paper explains why simple Blind
Schnorr Signatures are broken and how the Clause Schnorr Blind Signature scheme is se-
cured against this attack.
Compared to the currently used RSA Blind Signatures, the new scheme has an additional
request, two blinding factors instead of one and many calculations are done twice to pre-
vent attacks.

The Taler protocols were redesigned to support the Clause Blind Schnorr Signature scheme,
including slight alterations to ensure abort-idempotency, and then further specified. Be-
fore starting with the implementation of the redesigned protocols, the cryptographic rou-
tines for Clause Blind Schnorr Signatures were implemented as part of the thesis.
All of the implemented code is tested and benchmarks are added for the cryptographic
routines.

Multiple results were achieved during this thesis: The redesigned protocols Taler proto-
cols with support for Clause Blind Schnorr Signatures, the implementation of the crypto-
graphic routines, the implementation of Talers core protocols and a detailed comparison
between RSA Blind Signatures and Clause Blind Schnorr Signatures. Overall, the Clause
Blind Schnorr Signatures are significantly faster, require less disk space, and bandwidth
and provide cipher agility for Taler.
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1. Introduction

1.1. Motivation

Public key cryptography based on elliptic curves allows smaller key sizes compared to
other cryptographic systems. While still providing equivalent security, the smaller key
size leads to huge performance benefits.
Blind Signatures are one of the key components upon which Taler’s privacy is built upon.
Our thesis adds support for amodern cryptographic scheme called the Clause Blind Schnorr
Signature scheme [FPS19].
Additionally to the benefits of ellicptic curve cryptography, adding a second blind signa-
ture scheme makes Taler independent of a single cryptographic scheme and thus provides
cipher agility.

1.2. Goals

The project definition is as follows [Ben21]:
The students will implement the blind Schnorr signature inside Taler. Taler is a system

for the management of virtual money. Taler is based on coins that need to be signed by an
exchange (for instance a bank). In the actual version of the system, coins are signed by the
exchange using Schaum’s bind-signature protocol. This allows users to have signed coins,
without the exchange knowing what it signed. This step is fundamental for the privacy
protection of the system.
The students have to insert the Schnorr blind signature algorithm inside the protocol for
the creation of coins. But they also need to change the Taler subsystems where the verifi-
cation of the signature is done.
The actual Taler system allows people to let an exchange sign a coin for which they do
not have the private key. This is a security issue (for misuse of coins on the dark-net for
instance). An optional task for the project is to prevent a user to let an exchange sign a
public key when the client does not have access to the corresponding private key.
Here is a list of the tasks that the students must do:

I Design a protocol integrating Schnorr blind signature in the creation of Taler coins.

I Implement the protocol inside the exchange application and the wallet app.

I Analyze the different Taler subsystems to find where the blind signature is verified.

I Replace verification of the blind signature everywhere it occurs.

1



1. Introduction

I Compare both blind signature systems (Schaum’s and Schnorr’s), from the point of
view of security, privacy protection, speed, …

I Write tests for the written software.

I Conduct tests for the written software.

I Transfer the new software the Taler developers team

Here is a list of optional features:

I Design a protocol, such that the exchange can verify that the user knows the private
key corresponding to the coin that is to be signed.

I Implement that protocol.

1.3. Scope

In scope are all necessary changes on the protocol(s) and components for the following
tasks:

I Research the current state of Blind Schnorr Signature schemes

I Redesign the Taler protocols to support Blind Schnorr signatures

I Add support for a Blind Schnorr Signature Scheme in the exchange,merchant, wallet-
core, wallet web-extension and optionally on the android mobile wallet

I design and implement a protocol where the user proves to the exchange the knowl-
edge of the coin that is to be signed (optional)

Out of scope is production readyness of the implementation. This is because changes
in the protocos and code need to be thoroughly vetted to ensure that no weaknesses or
security vulnerabilities were introduced. Such an audit is out of scope for the thesis and is
recommended to be performed in the future. The iOS wallet will not be considered in this
work.
It is not unusual that a scope changes when a project develops. Due to different reasons,
the scope needed to be shifted. Since there are no libraries supporting Clause Blind Schnorr
Signatures, the signature scheme has to be implemented and tested before integrating it
into Taler. While this is still reasonable to do in this project, it will affect the scope quite a
bit. The analysis of the optional goal showed, that a good solution that aligns with Taler’s
goals and properties needs more research and is a whole project by itself.
Scope changes during the project:

I Added: Implement the cryptographic routines in GNUnet

I Removed: design and implement a protocol where the user proves to the exchange
the knowledge of the coin that is to be signed (optional)

2



1. Introduction

I Adjusted: Focus is on the implementation of the exchange protocols (Withdraw,
Spend, Refresh and cryptographic utilities)

I Adjusted: Implementation of the refresh protocol and wallet-core are nice-to-have
goals

I Removed: The Merchant and the android wallet implementations are out of scope

3



2. Preliminaries

2.1. GNU Taler Overview

This chapter provides an high-level overview of GNU Taler with its core components. The
purpose of this chapter is to provide all the necessary details to understand this work and
is not a specification nor a documentation of GNU Taler. For more information on GNU
Taler refer to [Dol19] or the GNU Taler documentation [SAc].
Generally, GNU Taler is based on Chaumian e-cash [Dav83]. The following parts discuss
the different entities seen in the figure 2.1

2.1.1. Components

In this section the different components are described as in [Dol19].

Figure 2.1.: GNU Taler simple overview (source: [Tal21c])

4



2. Preliminaries

Exchange

The exchange is the payment service provider for financial transactions between a cus-
tomer and merchant. The exchange holds bank money as reserve for the anonymous digi-
tal coins.
Details of the exchange’s functionality can be found in section 4.3 from Florian Dold’s the-
sis [Dol19] or in the documentation [SAd].
The code can be found in the exchange’s git repository [Repd].

Customer (Wallet)

A customer holds Taler Coins in his electronic wallet. As we see in figure 2.1, a customer
can withdraw coins from the exchange. These coins can then be spent with a merchant.
Details of the wallet’s functionality can be found in section 4.6 from Florian Dold’s thesis
[Dol19] or in the documentations [SAi] [SAh].
Git Repositories:

I Main repository [Repj]
This Repository includes the wallet-core and the implementations for the web exten-
sion and CLI.

I Android app [Repg]

I iOS app [Reph]

Merchant

Amerchant accepts Taler Coins in exchange for goods and services. Themerchant deposits
these coins at the exchange and receives bank money in return.
Details of the wallet’s functionality can be found in section 4.5 from Florian Dold’s thesis
[Dol19] or in the documentations:

I Operator manual [SAf]

I Merchant API [SAe]

I Back-Office [SAa]

I Point-of-Sales [SAg]

Git Repositories:

I Backend: [Repe]

I Backoffice: [Repb]

I Point-of-Sales App: [Repg] (part of android repo)

Merchant Frontend Repositories:

5



2. Preliminaries

I Payments with Django: [Repc]

I Wordpress woocommerce plugin: [Repk]

I Saleor Frontend: [Repf]

I Demo Frontends: [Repi]

Auditor

The auditors, which are typically run by financial regulators, have the purpose to monitor
the behavior of the exchanges to assure that exchanges operate correctly.
Details of the auditor’s functionality can be found in section 4.4 from Florian Dold’s thesis
[Dol19] or in the documentation [SAb].
Git Repositories:

I Main repository [Repd] (Part of exchange repository, inside ./src/auditor and ./sr-
c/auditordb)

I Auditor’s public website [Repa]

Bank

The banks receive wire transfer instructions from customers and exchanges. As long as
the banks can make wire transfers to each other, the Taler parties do not have to have the
same bank.

2.1.2. Taler Step by Step

This is a high-level overview of what Taler generally does. Many details (like privacy of
the buyer, income transparency) are left out and are explained in the following sections.
We see in Figure 2.2 how Taler works step by step (at a high-level).

1. The customer decides to withdraw Taler coins. To do this, he goes to his bank and
gives the order to pay the exchange.

2. The customers bank receives the customers order and makes a wire transfer to the
exchanges Bank.

3. The exchange has received the money and the customer can now withdraw coins to
his wallet.

4. The customer can now spend his coins at a merchant or merchants of his choice.

5. The merchant can then deposit the coins at the exchange.

6. The exchanges bank makes a wire transfer to the merchants bank.

7. The merchant has successfully received the money for the goods he sold.

6



2. Preliminaries

Figure 2.2.: GNU Taler overview (source: [Tal21b])

2.1.3. Protocols Overview

This section provides a high-level overview of the different Taler protocols. The details are
here omitted and discussed later.

Refresh Protocol

Taler has a quite interesting protocol to get change. The purpose of the protocol is to give
unlinkable change. When a customer buys something from amerchant, in most situations
he does not have the exact sum in coins. For this reason, change is needed to provide
a convenient payment system. A coin can be partially spent. When this happens, the
exchange and the merchant know that this coin is used for that specific contract. If the
rest of this coin would be spent in future, one could link these two transactions. Therefore,
a mechanism to get unlinkable change while still preventing money laundering or tax
evasion is needed.

Refund

Taler has a built-in refund functionality. Merchants can instruct the exchange to refund a
transaction before the refund deadline. The customer then refreshes the coin(s) in order
for payments to remain unlinkable.

7



2. Preliminaries

Payment Fees

The exchange can charge fees for withdrawal, refreshing, deposition of coins. These fees
can depend on the denomination since different denominations can have different storage
requirements. Merchants are able to cover these costs fully or partially.
Exchanges are also able to aggregate wire transfers tomerchants, thus reducingwire trans-
fer fees.

Tipping

Merchants can give customers a small tip. This feature can be useful for different use
cases, for example a merchant can give a tip when a customer participates in a survey.

Auditing

Financial auditing is built-in to Taler in the form of auditors. Auditors have read access
to certain exchange databases. Their task is to verify that exchange work as expected, see
chapter 4.4 in Florian Dold’s thesis [Dol19] for more details. In future versions, the auditor
will provide an interface that can be used by merchants to submit deposit confirmation
samples. This can be used to detect compromised signing keys or a malicious exchange.

2.1.4. Properties

This section describes Taler’s properties.

Free Software

The core components of GNU Taler are under the following licenses:

I exchange [Repd]: GNU AGPL1

I merchant [Repe]:

– backend: GNU GPL2v3+, GNU AGPL

– library: GNU LGPL3

I wallet-core [Repj]: GNU GPL

1GNU Affero General Public License
2GNU General Public License
3GNU Lesser General Public License

8



2. Preliminaries

Buyer Privacy Protection

Taler protects the privacy of buyers during the different stages in the lifetime of a coin:

1. Reserve: The reserve is identified by a key pair (private and public key). This means
that the exchange doesn’t know the identity of the reserve account holder. Whoever
knows the private key is able to withdraw from the corresponding reserve.

2. Withdrawal: The withdrawal process is encrypted with TLS and uses a blind sig-
nature scheme. Therefore the exchange doesn’t know which customer holds which
coin.

3. Payment: The complete payment process doesn’t rely on any information identifying
a customer.

Beware that an anonymous bi-directional channel is assumed for communication between
the customer and the merchant as well as during the retrieval of denomination key from
the exchange and change for partially spent coins (between customer and exchange).

Merchant Taxability

Merchant’s incomes are transparent to auditors which makes taxation by the state possi-
ble.
A buyer could theoretically transfer the private key and signature of a coin directly to the
merchant to bypass the exchange. However, this is suboptimal for the merchant because
the knowledge of the coin doesn’t grant him the sole ownership. If the customer spends the
coin in another transaction before the merchant, the coin is voided before the merchant
claims its value, thus rendering this form of payment unusable. The same principle holds
for change (refreshed coins) because it is linked to the original coin. Whoever knows the
private key and signature of the original coin can obtain the change and use it before the
merchant.

Anti Money Laundering and Combating Financing of Terrorism

Every transaction contains the cryptographic hash of the associated contract. This enables
the authorities to request the merchant to reveal the transaction details (the contract). If
the merchant isn’t able to reveal the contract, in other words fails to deliver a contract
with the same hash which is included in the transaction, he risks punishment or further
investigation.
Another aspect for AML4 and CFT5 are KYC6 checks. Know Your Customer checks require
certain institutions to verify certain information about their business partners in order to
prevent money laundering and terrorism (see [Wik20]).
GNU Taler implements these KYC checks:
4Anti Money Laundering
5Combating Financing of Terrorism
6Know Your Customer

9
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I Exchanges know the identities of their customers.

I Merchants might need to pre-register with exchanges (depending on the deployment
scenario).

Payer Fraud Prevention

The following definition was taken from the BigCommerce website [Big].

”Payment fraud is any type of false or illegal transaction completed by a cybercriminal. The
perpetrator deprives the victim of funds, personal property, interest or sensitive information

via the internet.”

Prevention of payment fraud is a design goal for GNU Taler.

Minimal Information Disclosure

GNU Taler aims to disclose as minimal information as possible. This mostly concerns cus-
tomers, but merchants also profit by keeping financial details hidden from competitors.

Single Point of Failure Avoidance

SPOF7s are fatal because a failure in this component can bring the complete system to a
halt.

Offline Payment (unsupported)

GNU Taler doesn’t offer offline payments due to the CAP problem (see chapter ”Challenges
of offline payments” in [Chr21]).

2.2. Cryptographic Preliminaries

In this section we will cover the necessary preliminaries to understand Taler. For this part
we took most of the information from Nigel P. Smarts book Cryptography made simple
[Sma16] and from the course ”Applied Cryptography” at the BFH. The chapter includes
preliminaries of the already implemented cryptographic schemes and the ones that are
implemented during this work.

7Single Point of Failure
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2.2.1. Hash Functions

As source for this section, page 271-275 were used in Cryptography made Simple [Sma16].
In this paper a hash function is always a cryptographic hash function. Cryptographic hash
function are one-way functionsH(), which are calculating the hash valueh fromamessage
m so that h = H(m). With known input one can easily calculate the hash value. The other
way around is computationally infeasible.
Cryptographic hash functions have the following properties.

(First) Preimage Resistance

It should be hard to find a message with a given hash value. For a given output y it is
impossible to calculate the input x such that h(x) = y.
This basically means, a hash function can not be inverted, not even with unlimited com-
puting power. Toomuch information is destroyed by the hash function and there aremany
values resulting in the same hash.

Second Preimage Resistance

Given one message, it should be hard to find another message with the same hash value.
For a given x1 and h(x1) it is hard to find a x2 such that h(x1) = h(x2).

Collision Resistance

It should be hard to find two messages with the same hash value. It is quite obvious that
collisions are existent, since there are more possible messages than hash values. This is
also known as the pigeonhole principle. Even if there are hash collisions, it should be
hard to find x1 6= x2 such that h(x1) = h(x2). Due to the birthday paradoxon (a detailed
description can be found under [Wik21a]) it is easier to cause a collision of two arbitrary
messages than of a specific message.

2.2.2. Key Derivation

A KDF8 derives one or more cryptographically strong secret keys from initial keying mate-
rial by using a Pseudo Random Function. Therefore, input of a KDF is some sort of keying
material (e.g. from a key exchange). Output will be a pseudo-random bit-string, which can
be used as new key material.

Pseudo Random Function

A PRF9 is a deterministic function whose output appears to be random if the input is un-
known. The output is computationally indistinguishable from a true random source. Dif-

8Key Derivation Function
9Pseudo Random Function
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ferent PRFs exist, for example AES10 or HMAC could be used as PRF. In the case of HKDF,
HMAC is a suitable choice as PRF.

HMAC

A Message Authentication Code (MAC11) provides unforgeability, which means, only a per-
son who knows the key k can compute the MAC. Further, a MAC protects the message in-
tegrity, since unauthorized changes are being detected. Last but not least, message au-
thenticity is provided too, since only a person who knows the key can compute the HMAC.
However, it does not provide non-repudation because it is a shared secret. MACs take a
message and a key as input and give the MAC tag as output.
One way to design such MACs is by using a hash function. The obvious way one would de-
sign such a function would most likely be: t = H(k||m||pad) However, this variant would
be completely insecure with hash functions based on Merkle-Damgard constructions. Be-
cause of the structure of such hash functions, it is easy to find H(M ||X) for an arbitrary
X and a hash valueH(M), with that a so called length-extension attack is possible.
HMAC prevents this attack by computing the MAC as follows: t = HMACk(m) = H((k ⊕
opad)||H((k ⊕ ipad)||m))
H() could be any standard hash functions, for example SHA-256, SHA-512 or SHA-3. ⊕
stands for the XOR operation. HMAC is specified in [RFC2104].

HKDF

HKDF follows the extract-then-expand paradigm and therefore has two phases. In the ex-
tract phase, the input keying material is taken and a fixed-length pseudorandom keyK is
extracted. This phase is used to generate a high entropy pseudorandom key from poten-
tially weaker input keying material. This key K is used in the expand phase to output a
variable-length, pseudorandom key.
The HKDF makes use of HMAC (2.2.2) instantiated with a hashfunction 2.2.1. It takes

the input keying material, a salt and the length of output keying material as arguments.
HKDF is specified in [RFC5869].

2.2.3. Digital Signatures

As source for this section, page 216-218 were used in Cryptography made Simple[Sma16].
A digital signature is a cryptographic function used to verify the origin and integrity of a
message. It provides the following properties:

I Sender authenticity: The origin/sender of a message can not be forged.

I Message integrity: No unauthorized change to themessage can bemade, themessage
is tamperproof.

10Advanced Encryption Standard
11Message Authentication Code
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I Non-repudiation: After a message is signed, one can not dispute that a message was
signed.

If verification is successful, only Alice knows her private key and Bob uses Alice’s public
key to verify, then Bob knows that this message is really from Alice and the message has
not been tampered or further modified. A digital signature scheme has a message space
M, a signature space S and three algorithms:

I Key generation: (pk, sk)← keyGen()

I Signatue generation: s←signsk(m)

I Verification: v ←verifypk(m, s) where v ∈ 0, 1

If the result of the verification algorithm equals 1, a signature for m is called valid.
Digital signatures are publicly verifiable, which means anyone can verify that (m, s) is
legitimate.

Adversary Models & Provable Security

Digital Signature schemes are believed to be secure when they are EUF-CMA secure. Ex-
istentially Unforgeability (EUF12) means that given a public key pk the adversary cannot
construct a message with a valid signature, except with a negligible probability. Choosen-
Message Attack (CMA13) means that an adversary can ask a signing oracle to produce valid
signatures s′ = signsk(m

′) for arbitrary messagesm′ 6= m.
EUF-CMA is therefore existentially unforgeability under chosen message attack and is a
standard security model for digital signatures. More details can be found in page 217-218
in Cryptography made Simple [Sma16].

RSA-FDH Signature Scheme

As source for this section, pages 300-301 and 333-335 were used in Cryptography made
Simple [Sma16].
RSA-FDH is a deterministic digital signature scheme which provides authenticity, mes-

sage integrity and non-repudation. The RSA signature scheme (without the full domain
hash) is NOT EUF secure and is vulnerable to existential forgery attacks. RSA-FDH is one
possible solution for a EUF-CMA secure scheme. EUF-CMA and its adversary model is fur-
ther discussed in section 2.2.3. RSA-FDH is EUF-CMA secure under factoring and RSA as-
sumptions. More details on the hardness assumptions can be found on page 32-49 in Cryp-
tography made Simple [Sma16].

12Existentially Unforgeability
13Choosen-Message Attack
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Full-Domain Hash A Full-Domain Hash is a hash function with an image size equal to the
size of the RSA modulus. The hashfunction h() used in the RSA-FDH sign (section 2.2.3)
and RSA-FDH verify (section 2.2.3) needs to fulfill all the security properties we defined in
chapter 2.2.1. This means that the image is a co-domain of the RSA group Z∗

N . Provided
that the hashfunction has properties of a random oracle, RSA-FDH is provably EUF-CMA
secure under the RSA assumption.

RSA Key Generation The information in this section is from the script of the BFH module
Public Key Cryptography taught by Prof. Dr. Walter Businger ([Bus21]). The RSA private
and public key are generated like this:

1. Generate two random prime numbers p, q where p 6= q

2. Calculate N = pq

3. Calculate λ = lcm(p− 1, q − 1)

4. Randomly choose a number d which is bigger than p and q and where gcd(d, λ) = 1

5. Calculate e, the multiplicative inverse of d mod λ

6. The public key is (e,N), the private key is (d,N)

7. Destroy all numbers not included in the private or public key

Note that ”lcm” stands for least common multiplier and ”gcd” means greatest common
divisor. The original RSA specification uses φ(n) = (p− 1)(q − 1) instead of λ = lcm(p−
1, q − 1). φ(n) is a multiple of λ (for details see [Bus21]).

Signature Algorithm The signature can be calculated as following:
s← (FDH(m))d mod N

Verification Algorithm The signature can be validated as following:
FDH(m)← se mod N

Schnorr Signature Scheme

The Schnorr Signature scheme is a randomized signature scheme, which is proven to be
EUF-CMA secure under DLP14. More information about the DLP can be found in chapter 3 of
Cryptography made Simple [Sma16]. In february 2008 the patent expired and Schnorr sig-
natures are now becoming widely deployed. (eg. EdDSA). Schnorr signatures gained quite
some attraction lately, since Bitcoin has announced to support Schnorr signatures starting
from Block 709632 (see [Pie20], [Bit], and [Repm]). As reference for the Schnorr signature
scheme (and later Clause Blind Schnorr Signature Scheme) we use the paper Blind Schnorr
Signatures and Signed ElGamal Encryption in the Algebraic Group Model [FPS19] as general
source for Schnorr related schemes.
14Discrete Logarithm Problem
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User Signer
knows: public parameters: knows:
public keyX 〈p,G, G,H〉 private signing key x,X := xG

n← random ∈ Zp

R := nG
R←−−−−−−−−−−−

c := H(R,m)
c−−−−−−−−−−−→

s := n+ cx mod p
s←−−−−−−−−−−−

check sG = R+ cX
σ := 〈R, s〉

Figure 2.3.: Schnorr signature protocol with user who wants to sign a messagem by the signer

Setup We have a GroupG of order p and a generatorG of the group. Further a Hashfunc-
tionH : {0, 1}∗ → Zp is used.

Key Generation The key generation is the same as in DSA15.

1. private key is a random integer x← random ∈ Zp

2. public key isX ← xG

Sign The sign function takes the secret key x and the message m to be signed as argu-
ment. The interactive version with a signer and a user can be seen in figure 2.3.

1. choose r ← random ∈ Zp

2. calculate R := rG

3. c := H(R,m)

4. s := r + cx mod p

5. σ := (R, s)

6. return σ

15Digital Signature Algorithm
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Verify The verify function takes the public keyX, the messagem and the signature σ as
argument.

1. c := H(R,m)

2. check sG = R+ cX

3. return true if check was successful, false otherwise

The verification holds because sG = R+ cX is (r + cx)G = rG+ cxG which is equal.

Edwards-curve Digital Signature Algorithm

EdDSA16 is a scheme for digital signatures based on twisted Edwards curves and the Schnorr
signature scheme. The information described here originates from [JL17] and [Wik21c].
EdDSA is a general algorithm that can be used with different curves. A choice in curves
consists of 11 parameters. These are the most important (the others can be found in [JL17]:

I odd prime power q (used to generate elliptic curve over finite field Fq)

I integer b, where 2b−1 > q, describing the bit size of various elements

I cryptographic hash functionH with output size of 2b

I base point on curve B (generator)

I number c, (either 2 or 3)

I prime number L where LB = 0 and 2c ∗ L = number of points on the curve

Key Creation The private key k is a random bit-string of length b. The public key A is a
point on the curve. To generate it, we calculateA = sB where s = H(k)[: b] (meaning that
we take the b least significant bits from the output of the hash function as s).

Signature Creation An EdDSA signature of a messageM is composed of (R,S), which are
generated as follows:

s = H(k)[: b]

r = H(H(k)[b+ 1 : 2b] ||M)

R = rB

S = (r +H(R||A||M) ∗ s) mod L

Note that [: b]means taking the b least significant bits, [b+1 : 2b]means taking the b most
significant bits and R||Ameans concatenating R and A.

16Edwards-curve Digital Signature Algorithm
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Signature Verification (R,S) is the signature,M is the message, A is the public key and
c,B are curve parameters. To verify a signature, the following equation must be satisfied:
2cSB = 2cR+ 2cA ∗H(R||A||M)
This means that verify() returns 1 if the equation holds and 0 otherwise.

Ed25519 Ed25519 is an EdDSAbased signature scheme anduses Curve25519 (see [Ber06]),
which offers 128 security bits. Curve25519 gets its name from the prime 2255 − 19 and is
designed for fast computation and to resist side channel attacks.
These are the most important EdDSA parameters for Ed25519 (the others can be found in
[JL17]):

I q = 2255 − 19

I b = 256

I H(): SHA-512

I B = (15112221349535400772501151409588531511454012693041857206046113283949847762202,
46316835694926478169428394003475163141307993866256225615783033603165251855960)

I c = 3

I L = 2252 + 27742317777372353535851937790883648493

2.2.4. Blind Signature Schemes

One could think of blind signatures as a message put into an envelope made of carbon
paper. The signer stamps his signature on the envelope and due to the properties of a car-
bon paper, the message is now signed too. (the stamp ”stamps” through the envelope on
the message). The client then can open the envelope, and he possesses a correctly signed
message. This is achieved by the client by blinding the message with a blinding factor be-
fore sending to the signer (”blind()” operation). The signer signs the blinded message and
returns the signature of the blinded message to the client. The client, who possesses the
blinding factor can then unblind the signature and gets a signature of the original mes-
sage (”unblind()” operation). The explanation above leads us to the additional security
property of a blind signature, the blindness of signatures. This property requires that a
signer cannot link a message/signature pair to a particular execution of the signing proto-
col [FPS19].
A blind signature scheme is called perfectly blind if the generated signature (unblinded
signature) is statistically independent of the interaction with the signer (blinded signa-
ture). Thus, blind signatures cannot be linked to the signer interaction in an information
theoretic sense. [Sch04] [CP93]
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RSA Blind Signature Scheme

As source for this section, the course material from ”Applied Cryptography” from BFH and
[Dav83] were used. The process for receiving a valid signature from the exchange uses a
blind signature scheme invented by David Chaum ([Dav83]) which is based on RSA signa-
tures. The process is described in figure 2.4.
Note that Bob (the signer) uses a standard RSA signature and can’t verify if the message
from Alice is blinded. Mathematically a blind signature works similar to the ”naive” RSA

Alice Bob
knows: knows:
RSA public keyDB = e,N RSA keys dB, DB

messagem

blind:
r ← random ∈ Z∗

N

m′ = m ∗ re mod N
m′

−−−−−−−−−−−→
sign:
s′ = (m′)dB mod N

s′←−−−−−−−−−−−
unblind:
s = s′ ∗ r−1

Figure 2.4.: Blind signature scheme

signature scheme. We consider Alice as the party who wants to have a messagem blindly
signed by Bob. Bob has a public key DB = (e,N) and his corresponding private key dB
known only by Bob. Alice needs to generate a random blinding factor r ∈ Z∗

N , which needs
to remain secret. Alice then calculatesm′ = m∗re mod N . The blinded valuem′ will now
be sent to Bob by Alice. Bob on his side calculates now the signature as usual: s′ = m′dB

mod N . The signature s′ is sent to Alice by Bob. Alice can calculate the signature as fol-
lowing:
s = s′ ∗ r−1.
s is a valid signature ofm, while the signer, Bob, does not knowm nor b.
We now want to analyze this closer to understand why blind signatures work. Let’s look at
this equation:
s′ = m′dB = (m ∗ re)dB = mdB ∗ (re)dB .
The interesting part for now is (re)dB , since this is r1. This means the signature s′ we
got from Bob is s′ = mdB ∗ r1. Now it is quite obvious how the valid signature s can be
calculated by multiplying with the inverse of r as in: s = mdB ∗ r1 ∗ r−1 = s′ ∗ r−1.

18
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Blindness RSA Blind Signatures are considered perfectly blind (see subsubsection 2.2.4).
There exist multiple 〈r,m〉 pairs that matches m′ such that m′ = m ∗ re mod N . Thus,
RSA Blind Signatures achieves perfect blindness which cannot be attacked by brute-force
or similar attacks. Even if a valid 〈r,m〉 pair is found, the attacker has no possibility to
know if it is the correct pair without additional information.

RSA Blinding Attack There are also some possible attacks on this scheme. First this is
subject to the RSA blinding attack. In this attack the property is used, that the signing
operation is mathematically equivalent to the encrypt operation in RSA. The attacker has
a ciphertext c = md and he wants to break this message. Now, the attacker uses the ci-
phertext c as ”message” in the blind signature scheme above.
m′′ = cre mod n = (me mod n) ∗ re mod n = (mr)e mod n.
TheAttacker then sends the blindedmessagem′′ to the signerwho blindly signs the blinded
message.
s′ = m′′d mod n = (mr)ed mod n = m ∗ r mod n.
The attacker recovers the message now withm = s′ ∗ r−1 mod n.
This attack could be prevented by the use of a padding scheme, however this would break
RSA symmetry. In blind signatures the RSA symmetry is needed, otherwise it would pro-
duce an incorrect value in the unblind operation.
Due to this issue; One should never use the same key for signing and encryption! A version
of blind signatures, RSA-FDH will be discussed, which solves this issue. [Wik21b]

Low Encryption Exponent Attack For this attack a possibly small messagem and a small
public key e is given. If now c = me < n, one could compute m = e

√
c. Similar to the

RSA blinding attack, padding could solve the issue, however RSA symmetry is needed. To
overcome this issue, RSA-FDH blind signatures are introduced in the next chapter.

RSA-FDH Blind Signatures

As source for this section, the course material from ”Applied Cryptograhy” from BFH and
[Dav83] were used. Blind signatures are discussed in 2.2.4. This version is quite similar
to the blind signatures already introduced in figure 2.4. In addition, the FDH introduced
in section 2.2.3 is used. The difference is that the message does not get directly blinded, it
gets hashed before with a Full-Domain Hash.
Given Alice’s message m and Bobs public key DB = (e, n). As in the simple RSA Blind
Signatures, a random blinding factor r ∈ Z∗

N is generated. Before the message is blinded,
the Full-Domain Hash f = FDH(m) is calculated, which then is blinded as in f ′ = fre

mod n. Since the hash function is a Full-Domain Hash, f is in the RSA domain Z∗
N . Now

proceed as in the blind signature scheme introduced in the previous section. The blinded
hash f ′ will be transmitted to Bob who then computes the signature s′ = f ′d mod n and
sends s′ back. Alice unblinds s′ and gets the valid signature s = s′r−1 mod n.
This version of blind signature is not subject to the attacks introduced in the previous

section.
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Alice Bob
knows: knows:
RSA public keyDB = e,N RSA keys dB, DB

messagem

Computef = FDH(m)

blind:
r ← random ∈ Z∗

N

f ′ = f ∗ re mod N
f ′

−−−−−−−−−−−→
sign:
s′ = (f ′)dB mod N

s′←−−−−−−−−−−−
unblind:
s = s′ ∗ r−1

Figure 2.5.: RSA-FDH blind signatues

Blind Schnorr Signature Scheme

The Blind Schnorr Signature Scheme is considered broken and should not be implemented.
This section is here to explain how blind Schnorr signatures generally work and should
help to understand The Clause Blind Schnorr Signature Scheme 2.2.4.
For the signer the calculations are the same as in the original Schnorr Signature Scheme

2.3. The exchange chooses a random n ← random ∈ Zp and calculates R := nG as
before. In comparison to the Schnorr Signature Scheme (see section 2.2.3) we generate
two random blinding factors α, β ← random ∈ Zp to achieve blindness. The User then
calculates R′ := R + αG + βX. This R′ is then used to calculate c′ := H(R′,m) and
is blinded with b as in c := c′ + β mod p. The challenge c is then blindly signed by the
signer s := n + cx mod p. The User checks if the signature is valid the same way as in
the original protocol. Finally the user has to unblind s as in s′ := s+ α mod p. Now the
unblinded signature is σ := 〈R′, s′〉. This scheme is described in figure 2.6. More details
can be found in the Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic
Group Model paper [FPS19].
To verify the signature, the verifier has to check if the following equation holds:

s′G = R′ + c′X

= R′ +H(R′,m)X

s′, R′ together form the signature,X is the public key andm is message.
The reason why this works is that the original Schnorr signature verification algorithm
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remains the same in blind signatures.

sG = R+ cX

By replacing s,R, c,with the values used in the blind signature scheme (as in figure 2.6)

s = s′ − α

R = R′ − αG− βX

c = c′ + β

we receive the following equation:

sG = R+ cX

(s′ − α)G = R′ − αG− βX + (c′ + β)X

s′G− αG = R′ − αG+ c′X

s′G = R′ + c′X

User Signer
knows: public parameters: knows:
public keyX 〈p,G, G,H〉 private signing key x,X := xG

r ← random ∈ Zp

R := rG
R←−−−−−−−−−−−

α, β ← random ∈ Zp

R′ := R+ αG+ βX
c′ := H(R′,m)
c := c′ + β mod p

c−−−−−−−−−−−→
s := r + cx mod p

s←−−−−−−−−−−−
check sG = R+ cX
s′ := s+ α mod p
σ := 〈R′, s′〉

Figure 2.6.: The broken Schnorr Blind Signature Scheme

Blindness Blind Schnorr Signatures also achieveperfect blindness (subsection 2.2.4). [CP93]
[FPS19]
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ROS Problem The security of Blind Schnorr Signatures relies on an additional hardness
assumption, the Random inhomogeneities in an Overdetermined, Solvable system of linear
equations or ROS problem. [Sch01] Solving the ROS17 problem breaks the unforgeability
property of blind Schnorr signatures by finding l+1 signatures out of l signing operations.
David Wagner showed in his paper that the ROS problem can be reduced to the (l+1)-sum
problem and therefore showed that an attack is practicable. [Wag02] More details about
ROS and Wagner’s algorithm can also be found in the paper Blind Schnorr Signatures and
Signed ElGamal Encryption in the Algebraic Group Model [FPS19].
Due to the possible attack, Blind Schnorr Signatures are considered broken and should not
be used. The next section 2.2.4 introduces a modified version for which the ROS problem
is much harder to solve.
The ROS problem is a recent research topic. Recently a paper about the (in)security of ROS
was published. [Ben+20] The scheme introduced in the next section 2.2.4 is considered
secure in 2021. It is important to keep in mind that the ROS problem is much newer and
there is open research done.

Clause Blind Schnorr Signature Scheme

The Clause Blind Schnorr Signature Scheme is a modification of the Blind Schnorr Sig-
nature Scheme for which the ROS problem is harder to solve. The Clause Blind Schnorr
Signature Scheme does this by choosing two random values r0, r1 and calculating R0 :=
r0G;R1 := r1G. The user generates the blinding factors twice α0, α1, β0, β1 ← random ∈
Zp. The user then calculates the challenges as before c′0 := H(R′

0,m); c0 := c′0+β0 mod p
and c′1 := H(R′

1,m); c1 := c′1 + β1 mod p. After the signer receives the two challenges
c0 and c1, the signer randomly chooses b ← random{0, 1} and calculates only sb as in
s := rb + cbx mod p. The User receives s, b and can unblind the signature to receive his
signature σ := 〈R′

b, s
′
b〉. The verification algorithm remains the same for Clause Blind

Schnorr Signature Scheme. Figure 2.7 shows the Clause Blind Schnorr Signature Scheme.
More details about the scheme can be found in the paper Blind Schnorr Signatures and
Signed ElGamal Encryption in the Algebraic Group Model [FPS19].

Blindness Clause Blind Schnorr Signatures also achieve perfect blindness as in Schnorr
Blind Signatures (see subsubsection 2.2.4). [FPS19]

2.2.5. Diffie Hellman Key Exchange

As source for this section, pages 383-386 were used in Cryptographymade Simple [Sma16].
The Diffie-Hellman key exchange is a well proofed and well understood key exchange
mechanism. DHKE18 relies mainly on the Discrete Logarithm Problem. DHKE is used for
key exchange in many protocols today (e.g. TLS cipher suites).

17Random inhomogeneities in an Overdetermined, Solvable system of linear equations
18Diffie-Hellman key exchange
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User Signer
knows: public parameters: knows:
public keyX 〈p,G, G,H〉 private signing key x,X := xG

r0, r1 ← random ∈ Zp

R0 := r0G
R1 := r1G

R0,R1←−−−−−−−−−−−
α0, α1, β0, β1 ← random ∈ Zp

R′
0 := R0 + α0G+ β0X

R′
1 := R1 + α1G+ β1X

c′0 := H(R′
0,m)

c′1 := H(R′
1,m)

c0 := c′0 + β0 mod p
c1 := c′1 + β1 mod p

c0,c1−−−−−−−−−−−→
b← random ∈ {0, 1}
s := rb + cbx mod p

b,s←−−−−−−−−−−−
check sG = R+ cX
s′ := s+ αb mod p
σ := 〈R′

b, s
′〉

Figure 2.7.: The Clause Schnorr Blind Signature Scheme
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Hardness Assumptions

As already stated, the DHKE relies on the assumption that calculating the discrete loga-
rithm is hard. The DLP is in G, where G is a finite abelian group of prime order q. This
could either be a subgroup of the multiplicative group of a finite field or the set of points
on an elliptic curve over a finite field. Given g, h ∈ G, find x such that gx = h.
Further, CDH19 and DDH20 are important hardness assumption, which can be reduced

to the DLP. Hardness assumptions are introduced very briefly. In this work we believe that
these well proofed and well tested hardness assumptions hold. (See Chapter 3.1 Cryptog-
raphy made Simple [Sma16] for more details on DH hardness assumptions.)

Protocol

Alice and Bob want to securely exchange a key with DHKE. Alice has a private key a and
a corresponding public key A = ga mod p. Bob has a private key b and a corresponding
public key B = gb mod p. With elliptic curves, the private key is a multiplication factor
for a base point g (see example on page 385 Cryptography made Simple [Sma16]).
Alice now sends her public key A to Bob. Bob can then calculate k = Ab mod p = gab

mod p and sends his public key B to Alice. Alice can then calculate k = Ba mod p = gab

mod p. Both get the same key k as result of the key exchange. Note: This protocol on its
own is not an authenticated key exchange, which means that Man-in-the-Middle attacks
are possible.
A different way of looking at DHKE is by thinking of a lock which can be unlocked by two

(private) keys. If one of the two private keys are known, one could calculate k on its own.
Taler’s refresh protocol (see 3.2.3) uses DHKE in a very interesting way.

2.2.6. Cut and Choose Protocol

A good introduction to cut and choose protocols gives the Paper from Claude Crépeau ([Cré]
References to the important examples can be found in the paper.):

”A cut and choose protocol is a two-party protocol in which one party tries to convince
another party that some data he sent to the former was honestly constructed according to an

agreed upon method. Important examples of cut-and-choose protocols are interactive
proofs, interactive arguments, zero-knowledge protocols, witness indistinguishable and

witness hiding protocols for proving knowledge of a piece of information that is
computationally hard to find. Such a protocol usually carries a small probability that it is

successful despite the fact that the desired property is not satisfied.
…

The expression cut-and-choose was later introduced by David Chaum in analogy to a
popular cake sharing problem: Given a complete cake to be shared among two parties

distrusting of each other (for reasons of serious appetite). A fair way for them to share the

19Computational Diffie-Hellman
20Decisional Diffie-Hellman
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cake is to have one of them cut the cake in two equals hares, and let the other one choose his
favourite share. This solution guarantes that it is in the formers best interest to cut the

shares as evenly as possible.”

Talers cut and choose protocol is zero knowledge, which means that nothing about the
secret is learned. The cut and choose protocol used in Taler is explained further when the
refresh protocol is discussed (see 3.2.3).

2.3. Taler Protocols

In section 2.1 a brief overview of how GNU Taler works is given. All the relevant prelimi-
naries are covered in section 2.2. In this section a closer look at the different protocols is
taken.

2.3.1. Withdrawal Protocol

The withdrawal protocol is described in chapter 4.7.2 of [Dol19]. Before coins can be with-
drawn, the customer generates a reserve key pair ws,Wp ← Ed25519.KeyGen(). He then
transfers a certain amount of money from his bank to the exchange’s bank via wire trans-
fer. This payment must include the reserve public keyWp. The customer will later autho-
rize withdrawals with a signature using his private reserve key. As soon as the exchange
has received the payment, the withdrawal for coins with a value i can begin (described in
figure 2.9).
At this stage the client knows the reserve private key and the public denomination key.

The customer can then create coins up to the amount included in the wire transfer. The
coin creation and blind signatures are described in section 2.2.4. So the client generates a
planchet (an Ed25519 key pair) and blinds it. This blinded planchet is then signed by the
customers private reserve key, to prove that the customer is eligible to withdraw the coin.
The exchangewho receives the blinded planchet and the signature first checks whether the
signature is valid with the public reserve key sent with the wire transfer. When success-
ful, the exchange blindly signs the planchet, returns the signature and notes the amount
withdrawn of the reserve. The customer unblinds the signature, checks its validity and
persists the coin. The state machine of a coin can be seen in figure 2.8.

Withdraw Loophole

The withdraw loophole allows withdraw operations where owner of the resulting coins
isn’t the owner of the reserve that the coins where withdrawn from. It is used for tipping
(described in section 2.3.6) and can therefore be seen as a feature.
By misusing the withdraw loophole, untaxed and untraceable payments can be per-

formed. Figure 2.10 explains how such a payment would work. Note that we omitted the
parts leading up to the coin creation (contract, agreement of price, number of coins and
their denominations). This is how it works on a high level:
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planchet

withdraw

melt

fresh coin

revoked coin

expired coin

deposit

refresh session reveal

dirty coin

recoup

zombie coin

spent coin

wired coinrefund

Figure 2.8.: State machine of a coin (source: [Tal22a])
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Customer Exchange
knows: knows:
reserve keys ws,Wp reserve public keyWp

denomination public keyDp = e,N denomination keys ds, Dp

generate coin key pair:
cs, Cp ← Ed25519.KeyGen()
blind:
r ← random ∈ Z∗

N

m′ = FDH(N,Cp) ∗ re mod N
sign with reserve private key:
ρW = Dp,m

′

σW = Ed25519.Sign(ws, ρW )
ρ=Wp,σW ,ρW−−−−−−−−−−−→

verify if denomination public key
is valid
check Ed25519.Verify(Wp, ρW , σW )
decrease balance if sufficient
sign:
σ′
c = (m′)ds mod N

σ′
c←−−−−−−−−−−−

unblind:
σc = σ′

c ∗ r−1

verify signature:
check σe

c = FDH(N,Cp)

resulting coin: cs, Cp, σc, Dp

Figure 2.9.: Withdrawal process
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1. The malicous merchant generates and blinds coins, which are then transmitted to
the customer

2. The customer authorizes the withdraw from his reserve by signing the blinded coins
with the private key of his reserve, thus generating withdraw confirmations.

3. The withdraw confirmations are transmitted to the exchange, which generates the
signatures and returns them to the malicous merchant.

4. Themalicousmerchant unblinds the signatures. He is now in possession of the coin,
thus the payment is completed.

2.3.2. Payment Process

The payment process is divided in two steps described by the spend and deposit protocols.
Details about the payment process can be found in multiple chapters in [Dol19]: Chapter
4.7.3 describes the spend and deposit protocols. Chapter 4.1.4 describes more general as-
pects as well as the contract header and deposit permission structure and details.
On a high level, payment works like this:

1. The customer submits a shopping cart (one or more items to buy) and commits his
intent to buy them.

2. Themerchant puts together the contract terms containing the necessary information
for payment, signs it and sends both to the customer (spend protocol).

3. The customer generates a deposit permission and its signature for each coin used in
the transaction (spend protocol).

4. The customer forwards the deposit permission(s) to the merchant (spend protocol).
If the deposit protocol is performed by the customer, this step can be skipped.

5. Either the customer or themerchant sends the deposit permission(s) to the exchange
(deposit protocol).

6. The exchange processes the deposit permission and returns a deposition confirma-
tion when successful (deposit protocol).

7. If the deposit protocol was performed by the customer, the deposit confirmation(s)
have to be forwarded to the merchant.

Spend Protocol

The payment process begins when a customer submits a shopping cart (one or more items
to buy) and commits his intent to buy them. The merchant has a key pair skM, pkM of
which the customer knows the public key. Note that certain details contained in contract
header or deposit permission like merchant KYC information, deposit and refund dead-
lines and fees are left out. The deposit state machine can be seen in figure 2.11.
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Customer malicous Merchant
knows: knows:
reserve keys ws,Wp

denomination public keyDp = 〈e,N〉 denomination public keyDp = 〈e,N〉

generate coin key pair:
cs, Cp ← Ed25519.KeyGen()
blind:
r ← random ∈ Z∗

N

m′ := FDH(N,Cp) ∗ re mod N
m′

←−−−−−−−−−
sign with reserve private key:
ρW := 〈Dp,m

′〉
σW := Ed25519.Sign(ws, ρW )

〈Wp,σW ,ρW 〉−−−−−−−−−→

malicous Merchant Exchange
knows: knows:

reserve public keyWp

denomination public keyDp = 〈e,N〉 denomination keys ds, Dp

〈Wp,σW ,ρW 〉−−−−−−−−−→
〈Dp,m

′〉 := ρW
verify ifDp is valid
check Ed25519.Verify(Wp, ρW , σW )
decrease balance if sufficient
sign:
σ′
c := (m′)ds mod N

σ′
c←−−−−−−−−−

unblind:
σc := σ′

c ∗ r−1

verify signature:
check if σc = FDH(N,Cp)

resulting coin: 〈cs, Cp, σc, Dp〉

Figure 2.10.: Untaxed payment using the withdraw loophole
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deposit created

deposit ready

refunddeposit due

aggregate

deposit tiny

deposit donepending transfer

transfer

finished transfer

pay

Figure 2.11.: State machine of a deposit (source: [Tal22b])
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1. The merchant puts together the following information (without transmitting them)
and requests payment:
I price v
I exchange Em (multiple possible)
I account Am at the exchange Em

I info (free form details containing the full contract)

2. The customer generates an Ed25519 claim key pair ps, Pp and submits the public key
to the merchant. This key can be used by the customer to prove that he didn’t copy
contract terms from another customer.

3. The merchant puts together the contract terms ρ and signs it with skM, resulting in
the signature σP .
The contract terms contains:
I Em (exchange)
I Am (account at exchange Em)
I pkM
I Hash(v, info)
I Pp

ρP (contract terms), σP (contract terms signature), v (price) and info are submitted
to the customer.

4. The customer does the following checks:
I Is the signature of the contract terms correct?
I Is the public key referenced in the contract terms the same as the one generated

in step 2?
I Is the hash of price and info the same as the one in the contract terms?

If all checks are successful, the customer chooses one or more coins to be spent. For
each coin, a deposit permission ρD and its signature σD is generated. The deposit
permission contains the following information:
I Coin public key Cp

I Coin denomination public key pkD
I Coin signature σC
I Value to be spent for this coin f (greater than zero, up to the residual value of

the coin)
I Hash of the contract terms ρP
I Account of merchant Am (at exchange Em)
I Merchant public key pkM
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The list of deposit permissions and their signatures is transferred to the merchant
who then executed the deposit protocol. Note that the customer is also able to deposit
the coins (instead of the merchant), this is used in cases where themerchant doesn’t
have an internet connection, but the customer does. This can be useful in cases
where the merchant becomes unresponsive. The customer can prove that he paid in
time.

5. The merchant receives the deposit permissions and signatures and uses the deposit
protocol to execute the payment.

Before we continue with the deposit protocol, there are a few interesting details to point
out (described in [Dol19] section 4.1.4):

I The contract terms and the deposit permission are JSON21 objects.

I The contract terms only contains a cryptographic hash of the contract. This improves
privacy since the exchange doesn’t have to know the full contract details, but still
makes it possible to identify the contract in case of a dispute or some form of audit-
ing.

I At the point where the merchant completes step three (submits the contract terms
and its signature) to the customer, the customer is able to finish the transaction
using the deposit protocol without interaction of the merchant. This means that the
merchant at this step must be able to fulfill the contract if the customer completes
the payment process.

Deposit Protocol

As previously mentioned, both parties (customer and merchant) are able to run the de-
posit protocol. In the following description, the term merchant will be used, but could be
replaced by customer. In cases where there are multiple deposit permissions (meaning
that multiple coins are used to pay), the deposit protocol is run separately for each deposit
permission.

1. The merchant submits the deposit permission and its signature to the exchange.

2. The exchange runs these checks:
I Is the denomination public key referenced in the deposit permission valid (is-

sued by the exchange, lifetime between start and deposit/refresh expiration,
not revoked)?

I Is the deposit permission signature σD a correct signature of the deposit per-
mission ρD with the Ed25519 coin public key Cp referenced in the deposit per-
mission?

21JavaScript Object Notation
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I Is there a processed deposit recorded in the exchanges databases based on coin
public key and contract terms hash (replay/double spending)? If not, continue
with the next check since this is correct and expected behavior.
If there is, does the recorded deposit permission equal the one we’re currently
checking? If this is the case, further checks can be skipped and the deposit
confirmation signature can be returned to the customer. If not, the process
should be terminated because there’s something wrong with the transaction.

I Is the signature of the coin valid?
I Is f (the value to be spent) smaller or equal the residual value of the coin (check

for overspending attempt)?

If all checks are successful, the exchange saves the deposit record containing the
deposit permission and its signature in a database, substracts the spent value from
the residual value of the coin and schedules the money transfer to the merchant’s
account Am (grouping payments is done to reduce payment fees).
The exchange calculates a deposit confirmation signature σDC for the deposit per-
mission with the exchange signing private key and returns them to the merchant.
This signature is also used to prove that a merchant was the first to receive payment
from a certain coin. Without this, an evil exchange could later deny confirming a
payment and claim double spending. With the signature, the merchant can prove
that the payment was confirmed by the exchange, thus delegating the responsibility
(and potential financial loss) for double spending detection to the exchange.

3. The merchant checks the signatures of the deposit confirmations with the exchange
signing public key.

It may happen that a payment gets stuck as partially complete, for example when a
backup of a wallet is restored and one coin or more have already been spent ([Dol19] chap-
ter 4.1.4). In this case, the customer can retry the payment with a different coin. If this
isn’t possible, the payment can be refunded (assuming refunds were enabled for this pay-
ment). Other scenarios were described in Dold’s thesis, but dismissed due to privacy con-
cerns. This means that disputes have to be settled aside from Taler when a customer isn’t
able to fully pay and refunds are disabled.

Web Payment Scenarios

The following methods are Taler-native methods for paying and payment validation. They
are not identity-based, meaning that they do not require a login or similar techniques.
Note that other methods could be implemented depending on the scenario.

I Resource-based web payment ([Dol19] chapter 4.1.5): All Taler contract terms con-
tain a fulfillment URL. This can either be a direct link to a digital product (like a
movie, a song or a document), or to a confirmation page. When a browser opens a
fulfillment URL for a resource that hasn’t yet been paid for, the merchant requests
payment. The wallet then generates and submits a claim key pair, thus claiming the
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contract, which then can be paid (if the user accepts the contract). The browser can
then retry to navigate to the fulfillment URL, this time submitting the contract order
ID as parameter, which the merchant can check if it has been paid (and deliver the
content if this is the case). This is known as the extended fulfillment URL
The wallet stores fulfillment URLs and their associated contracts. Upon receiving
a payment request, the wallet searches the stored fulfillment URLs and if it found
one, automatically forwards the user to the extended fulfillment URL containing the
contract.

I Session-bound payments and sharing ([Dol19] chapter 4.1.6): So far, validating pay-
ment is done using the extended fulfillment URL. The problem with this approach
is that this URL can be shared, which is a problem for digital content. To make this
more difficult, the seller’s website assigns the user a session ID (for example using
a session cookie) and extends the extended fulfillment URL with a session signature
parameter. This parameter can be used by the merchant to check if the user paid for
the resource or replayed the payment in this session.

I Embedded content ([Dol19] chapter 4.1.7): When paying to accessmultiple resources
behind a paywall (instead of just one resource), the previously described methods
do not work. Dold’s thesis suggest two methods:

1. A session cookie can be set by accessing the fulfillment URL. When the browser
requests a subresource, the merchant can verify the session cookie.

2. In this scenario, the fulfillment URL would show the resources behind the pay-
wall. Upon opening the extended fulfillmentURL, themerchant’swebsitewould
add an authentication token to the URLs of the subresources. When accessing
a subresource, the merchant can check the authentication tokens validity.

2.3.3. Refresh Protocol

This section provides a description of the refresh protocol. The technical details can be
found in 4.7.4 [Dol19]. All relevant preliminaries needed to understand the technical de-
tails were already introduced in this work.

Introduction

A protocol to refresh coins is needed for many reasons. One important reason is giving
change. Similar to the real world, there are often situations where one does not have the
exact amount of coins. A change protocol therefore provides a lot of convenience for the
users. Without such a mechanism it would be quite hard to use.
Giving change is not trivial, since AML and CFT compliance still needs to hold. On the other
side, the change still needs to provide privacy for the customer. Thus, the change must be
unlinkable to the previous (or any) transaction.
Complying with AML and CFT while preserving the customer’s anonymity may sound like

34



2. Preliminaries

a contradiction at first. However, Taler has a clever way to solve this problem with the
refresh protocol.
The general idea is that the new coin can be derived from the private key of the old coin.

DH Lock

DHKE was introduced in section 2.2.5. Taler uses ECDH22 as a lock with two possible keys
to unlock the shared key. To create such a lock, one creates two key pairs C = cG and
T = tG. To unlock now means calculating k. Both private keys, c and t are now able to
calculate k = tC = t(cG) = c(tG) = cT and thus can unlock the lock. This k can then be
used to derive the private key of the new coin and the corresponding blinding factor.

Customer Setup

The customer, which holds the old partially spend coin and knows
Cold = Ed25519.GetPub(cold). A transfer key T = Ed25519.GetPub(t) is then (randomly)
generated by the customer.
The key pairs T = Ed25519.GetPub(t) andCold = Ed25519.GetPub(cold) form the lock with
two keys that was introduced before. The customer then creates x = cold, T = tCold and
derives cnew, the private key of the new coin and bnew the blinding factor of the new key. As
usual the customer calculates the coins public key Cnew = Ed25519.GetPub(cnew), hashes
the new coin with FDH fnew = FDH(Cnew) and blinds the hash f ′

new = fnewb
e
new. The f ′

new

is then transmitted to the exchange.
Figure 2.12 shows how the new coin is derived as explained above.

RefreshDerive(s, 〈e,N〉, Cp)

t := HKDF(256, s, ”t”)
T := Curve25519.GetPub(t)
x := ECDH-EC(t, Cp)

r := SelectSeeded(x,Z∗
N )

c′s := HKDF(256, x, "c")
C ′

p := Ed25519.GetPub(c′s)

m := re ∗ C ′
p mod N

return 〈t, T, x, c′s, C ′
p,m〉

Figure 2.12.: The RefreshDerive derives a new coin from a dirty coin with a seed. The DH-Lock is used to create the
link used in the linking protocol

Now with the DH Lock the person who is in possession of the old key can always recalcu-
late and thus spend the new coin (as long as it knows the public transfer key T ). However,
there is one last thing: How does the exchange know that the old key is linked to the new

22Elliptic Curve Diffie Hellman
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one? To comply with AML and CFT, the exchange wants to ensure that the person who
created the new coin is also in possession of the old coin. A link needs to be created in a
way that nobody can link the old coin to the new coin, except the person in possession of
the old coin. The person in possession of the old coin needs to proof to the exchange that
this link was created without revealing the link. This problem is solved with the cut and
choose protocol in the next section.

Figure 2.13.: Taler refresh protocol, transfer key setup (source: [Tal21d])

36



2. Preliminaries

Cut & Choose

Instead of doing the customer setup once, it is done n times. The customer generates n
different transfer keys t1, t2 . . . tn. For each key the whole calculations are done and all
the blinded coins f ′

1, f
′
2 . . . f

′
n are sent to the exchange together with the old coins public

key and signature.
The exchange responds with a randomly picked number from 1 to n. The customer has to
reveal all the transfer keys, except the one picked by the exchange. The exchange makes
the same calculations with the revealed private transfer keys (without knowing the private
key cold). The exchange can now verify whether the customer was honest or not. A evil
customer could create a new coin which is not linked to the old coin (without the DH lock).
Such attacks will be detected with a high probability in this protocol. Since the tx picked
by the exchange is not checked, an evil customer can win this with a probability of 1/n.
Already with n = 3 an attack is not in the customers interest due to economic reasons.
In 2 out of 3 cases the exchange would detect the attack and would keep the money and
the customer would have lost it. The probability can be adjusted with n. With increasing
size of n the attack becomes even less attractive. When the cut and choose protocol ended
successfully, the value of the old coin is set to zero.

Figure 2.14.: Taler refresh protocol, cut and choose (source: [Tal21d])

2.3.4. Commit Phase

The refresh protocol is implemented in two phases. The commit phases creates k derives
and commits to this values by calculating a hash over the derives. On the exchange’s side
various checks are done to validate the request. Detailed steps of the commit phase are
shown in figure 2.15.
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Customer Exchange
knows: knows:
denomination public keyDp(i) denomination keys ds(i), Dp(i)

coin0 = 〈Dp(0), c
(0)
s , C

(0)
p , σ

(0)
c 〉

Select〈Nt, et〉 := Dp(t) ∈ Dp(i)

for i = 1, . . . , κ :
si → {0, 1}256

Xi := RefreshDerive(si, Dp(t), C
(0)
p )

(ti, Ti, xi, c
(i)
s , C

(i)
p ,mi) := Xi

endfor
hT := H(T1, . . . , Tk)
hm := H(m1, . . . ,mk)
hC := H(ht, hm)

ρRC := 〈hC , Dp(t), Dp(0), C
(0)
p , σ

(0)
C 〉

σRC := Ed25519.Sign(c(0),ρRC
s )

Persist refresh-request〈ρRC , σRC〉
ρRC ,σRC−−−−−−−−−−−→

(hC , Dp(t), Dp(0), C
(0)
p , σ

(0)
C = ρRC)

checkEd25519.Verify(C(0)
p , σRC , ρRC)

x→ GetOldRefresh(ρRC)
Comment: GetOldRefresh

(ρRC 7→ {⊥, γ})
if x = ⊥
v := D(Dp(t))

〈e0, N0〉 := Dp(0)

check IsOverspending(C(0)
p , Dp(0), v)

checkDp(t) ∈ {Dp(i)}
check FDH(N0, C

(0)
p ) ≡N0 (σ

(0)
0 )e0

MarkFractionalSpend(C(0)
p , v)

γ ← {1, . . . , κ}
Persist refresh-record 〈ρRC , γ〉
else
γ := x
endif

γ←−−−−−−−−−−−

Continued in figure 2.16

Figure 2.15.: Refresh protocol (commit phase)
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Customer Exchange
Continuation of figure 2.15

γ←−−−−−−−−−−−
check IsConsistentChallenge(ρRC , γ)
Comment: IsConsistentChallenge
(ρRC , γ) 7→ {⊥,>}

Persist refresh-challenge〈ρRC , γ〉
S := 〈s1, . . . , sγ−1, sγ+1, . . . , sx〉
ρL = 〈C(0)

p , Dp(t), Tγ ,mγ〉
ρRR = 〈Tγ ,mγ , S〉
σL = Ed25519.Sign(c(0)s , ρL)

ρRR,ρL,σL−−−−−−−−−−−→
〈T ′

γ ,m
′
γ , S〉 := ρRR

〈s1, . . . , sγ−1, sγ+1, . . . , sκ〉) := S

check Ed25519.Verify(C(0)
p , σL, ρL)

for i = 1, . . . , γ − 1, γ + 1, . . . , κ

Xi := RefreshDerive(si, Dp(t), C
(0)
p )

〈ti, Ti, xi, c
(i)
s , C

(i)
p ,mi〉 := Xi

endfor
h′T = H(T1, . . . , Tγ−1, T

′
γ , Tγ+1, . . . , Tκ)

h′m = H(m1, . . . ,mγ−1,m
′
γ ,mγ+1, . . . ,mκ)

h′C = H(h′T , h
′
m)

check hC = h′C
σ
(γ)
C := mds(t)

σ
(γ)
C←−−−−−−−−−−−

σ
(γ)
C := r−1σ

(γ)
C

check (σ
(γ)
C )et ≡Nt C

(γ)
p

Persist coin〈Dp(t), c
(γ)
s , C

(γ)
p , σ

(γ)
C 〉

Figure 2.16.: Refresh protocol (reveal phase)

2.3.5. Reveal Phase

In the reveal phase the customer receives γ and he reveals the all the seeds to the exchange,
except for sγ . The exchange can then verify if the customer was honest with probability
1/k. On success the exchange will return the blinded signature of the new coin and the
customer can then unblind and store the coin. The reveal phase is described in figure 2.16

(Un)linkability

The goal of the cut and choose protocol is to ensure with a high probability (1/n) that the
customer honestly created the new coin. It ensures that the old coin is linked to the new
coin via the DH lock.
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Figure 2.17.: Taler refresh protocol, linkability (source: [Tal21d])

With that, the following attack scenario is prevented (with probability 1/n):
An third party creates the new coin without the DH lock as described in section 2.2.4. The
third party sends the blinded new coin to the customer (who possesses the old coin). The
customer then signs the new coin by the exchange and sends the blinded signature back to
the third party. The third party would then be in possession of a valid new coin, which is
not linked to the old coin. As mentioned, such an attack is detected with a high probability
by the exchange with the cut and choose protocol described earlier.
We will now consider the following attack scenario:

Someone could give the private key of the old coin cold to another person. This other per-
son then can derive a new coin using the refresh protocol. The original customer currently
can not recreate the new coin with only the knowledge of the old coins private key cold. He
would need to know the public key of the transfer key Tx and also the blinded signature
of the new coin f ′

new. For this reason the exchange exposes the public transfer key Tx and
the blinded new coin f ′

new for a given old coin Cold. So anybody who knows the public key
of the old coin could ask for the public transfer key and the blinded signature of the new
coin. Only a person in possession of the old coins private key cold can recreate the new
coin’s private key.
This mechanism can not be abused for money laundering anymore, since the original cus-
tomer could trick this third person and spend the coin faster. The linking protocol is de-
scribed in figure 3.7.

2.3.6. Tipping Protocol

Source for this protocol was section 4.1.10 from [Dol19].
Merchants can give customers a small tip by using the withdraw loophole (described in
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Customer Exchange
knows: knows:
coin0 = 〈Dp(0), c

(0)
s , C

(0)
p , σ

(0)
C 〉

Cp(0)−−−−−−−−−−−→
L := LookupLink(Cp(0))

Comment: LookupLink(Cp) 7→ {〈ρ(i)L ,

σ
(i)
L , σ

(i)
C 〉}

L←−−−−−−−−−−−

for 〈ρ(i)L , σ
(i)
L , σ

(i)
C 〉 ∈ L

〈Ĉ(i)
p , D

(i)
p(t), T

(i)
γ ,m

(i)
γ 〉 := ρ

(i)
L

〈e(i)t , N
(i)
t 〉 := D

(i)
p(t)

check Ĉ
(i)
p ≡ C

(0)
p

check Ed25519.Verify(C(0)
p , ρ

(i)
L , σ

(i)
L )

xi := ECDH(c(0)s , T
(i)
γ )

ri := SelectSeeded(xi,Z∗
Nt
)

c
(i)
s := HKDF(256, xi, "c")
C

(i)
p := Ed25519.GetPub(c(i)s )

σ
(i)
C := (ri)

−1 ·m(i)
γ

check (σ
(i)
C )e

(i)
t ≡

N
(i)
t

C
(i)
p

(Re-)obtain coin〈D(i)
p(t), c

(i)
s , C

(i)
p , σ

(i)
C 〉

Figure 2.18.: Linking protocol
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section 2.3.1). This can be for a variety of different reasons, for example for submitting
a survey. The merchant needs to create a reserve with the exchange. The reserve keys is
now used to sign blinded coins generated by the user.

1. The Merchant triggers the Payment required response with the Taler-Tip header set

2. The taler tip header contains information like amount, exchange to use, deadline
and more. (details section 4.1.10 [Dol19])

3. The customer creates planchets that sum up the amount and blinds the token with
the denomination key of the specified exchange and sends the blinded planchets to
the merchant.

4. The merchant creates withdrawal confirmations (by signing them with the reserver
private key) for these planchets and responds with a list of signatures.

5. The customer then uses these signatures to create coins as in thewithdrawal protocol

The received coins are still anonymized and only spendable by the customer.

2.3.7. Refund Protocol

A merchant can undo a deposit on a coin by signing a refund permission. The protocol
details can be found in section 4.7.5 of [Dol19]. Since a refund is mainly done by the mer-
chant, to provide refunds a merchant need to support refunds. A refund can be either
fully or partially. After a refund, the customer is able to spend the coin, but it should be
refreshed first to prevent linking of transactions. The refund deadline is specified in the
contract header, after the deadline the exchange makes a wire transfer with the money to
the merchants bank. There is a refund fee, which is subtracted from the remaining coin
value. This also prevents denial of service attacks, or at least makes them economically
uninteresting. There exists automatic refunds when a payment only partially succeeds for
many reasons. Refunds are also an important business case formanymerchants whowant
to provide a convenient experience. A merchant can for example provide a refund when
the customer is not happy with the product. Such a refund can be made by the merchant
with a signature without the customers consent. Now should be clear what the purpose of
a refund protocol is, the rest of this section will look at the refund protocol.
In the protocol the customer requests a refund from the merchant. If the merchant

accepts the request, it authorizes the exchange to apply the refund.

1. The customer asks for a refund for payment p with reasonm

2. The merchant decides whether it accepts the refund or not according to the mer-
chants business rules.

3. If accepted, the merchant signs the refund permission with the merchants Ed25519
key and sends it to exchange.
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4. The exchange checks the signature and refunds the coin(s) and sends a signed con-
firmation to the merchant.

5. The merchant sends the signed confirmation from the exchange to the customer.

2.4. Trust and PKI in Taler

In this section Taler’s PKI23 is explained and how Taler handles trust. This section is in-
cluded due to the reason that we have to create Schnorr denomination keys to add the
Clause Blind Schnorr Signature scheme to Taler. Taler uses TLS, however it does not rely
on TLS for authenticity or integrity. (More detailed in chapter 4.1.3 of [Dol19])

Auditor

In Taler the auditors serves as trust anchor, and they are identified by a single Ed25519
public key. Similar to the list of trusted root CA24 that come with web browsers and oper-
ating systems, a wallet comes with a list of trusted auditor certificates. In the rest of this
section, different parts of Taler and how they are integrated in Taler’s PKI are discussed.
The section ends with a discussion about security risks of Taler’s trust model. For details,
refer to chapter 4.1.3 of [Dol19].

Figure 2.19.: GNU Taler PKI entities (source: [Dol19])

23Public Key Infrastructure
24Certificate Authority
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Exchange

The exchange has to expose an API in order to enable customers (wallets), merchants and
auditors to access keys and other information. An exchange has a long term master key
(Ed25519 key) and a base URL. The URL and the long term MK25 identifies an exchange.
The MK is only used as an offline signing key and should be stored on an air-gapped ma-
chine. Further, the exchange has online signing keys (Ed25519 key), which are signed by
the exchanges MK. This MK is on his side signed by one or possibly more auditors master
key(s). The exchange’s (online) signing keys are used to sign API responses. The denom-
ination keys of an exchange are also signed by the exchanges offline MK and the auditors
MK. The bank accounts supported by the exchange for withdrawals and deposits are also
signed by the exchanges offline MK.
API requests are made to the base URL appending the name of the endpoint (eg. <base-

url>/keys) The endpoint <base-url>/keys is used to get the exchanges signing keys and other
information. Similar to the CA trust model, the client (customer or merchant) can validate
the signature of the keys, with the list of trusted auditor certs.

Coins

As seen in the withdrawal protocol blind signatures are done with RSA public keys (section
2.2.4). These keys are called denomination keys and they represent the coin value of the
signed coins. The following information concerning the denomination keys are signed by
the exchanges master key (citation from [Dol19] chapter 4.1.3):

I The RSA public key

I The start date, after which coins of this denomination can be withdrawn and de-
posited.

I Thewithdraw expiration date, afterwhich coins cannot bewithdrawn anymore, must
be after the start date.

I The deposit expiration date, after which coins cannot be deposited anymore, must
be after the withdraw expiration date.

I The legal expiration date, after which the exchange can delete all records about oper-
ations with coins of this denominations, must be (typically quite a long time!) after
the deposit expiration date.

I The fees for a withdraw, deposit, refresh and refund operation with this coin, respec-
tively.

As mentioned, the denomination keys are signed by the exchanges MK and also by the
auditor.

25Master Key
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Merchant

The merchant has one Ed25519 public key. With that key the merchant authenticates to
the exchange and signs responses to the customer. Depending on the jurisdiction, an ex-
change needs to comply to KYC regulations. A merchant which accepts payments from all
exchanges (audited by a trusted auditor) therefore needs to fulfill KYC registration for all
accepted exchange separately. This is needed to be legally compliant.
Like the customer, also the merchant is configured with a set of trusted auditors and ex-
changes. A merchant only accepts payments with coins of denominations from a trusted
exchange which is audited by a trusted auditor.
For this reason Taler separates this service into an isolated service, similar to on-premise

or external payment gateways, which are used by most e-commerce shops nowadays.

Customer

A customer has private keys of reserves that they own to authenticate with the exchange.
The public key was communicated to the exchangewith the wire transfer. (A bank however
is not part of Taler’s PKI.) A customer is therefore not registered with an exchange.
Further a customer possesses the private keys of his coins and stores them in a digital

wallet.

Security Discussion

Taler’s trust model is technically similar to the CA trust model we know from TLS certifi-
cates. The trust anchor lies with the auditors, whose certificates are pre-configured by the
merchant or customer respectively. However, trust is always somehow attackable. That
does not mean that there is a security issue in the trust model. When the list of trusted au-
ditor certs of a customer/merchant somehow can be manipulated, the trust model breaks
for this entity.
One attack scenario would be to attack customers/merchants with a supply-chain attack
on thewallets ormerchant backends’ implementation. With software supply-chain attacks
on the rise in 2020/21 (although the concept is not new) such an attack could have a big
impact.
Since auditor certs are coupled with the wallet (or merchant) implementation, a bank,
country, central bank or auditor will most likely publish a wallet and a merchant imple-
mentation for the corresponding Taler ecosystem.
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This chapter describes the necessary changes on the protocol level to implement a Blind
Schnorr Signature Scheme to Taler.

3.1. Analysis of Current Protocols

The blind RSA signature scheme is only used for coin signatures. Note that we omitted
protocols (or parts of them) where the coin signature is transmitted, but no other actions
using it is performed.

An important property to mention here is abort-idempotency. Idempotence in the con-
text of computer science is a property to ensure that the state of a system will not change,
no matter how many times the same request was made. A more in-depth explanation is
given within the cited source [Z21].
abort-idempotency goes a bit further. When the protocol is aborted at any stage, for exam-
ple due to power cuts or network issues, the protocol still needs to ensure that the same
response is sent for the same request. This is especially challenging when dealing with
random values as we will see in the redesigned protocols in the following sections. For
RSA Blind Signatures it is inherently easier to provide abort-idempotency since signature
creation only needs one round-trip and requires less random values.
The following protocols currently use RSA Blind Signatures:

I Withdraw Protocol: The customer uses the blind signature scheme to blind the coins
before transmitting them to the exchange, which blindly signs it (standard RSA sig-
nature) and the returns the signatures. After the customer receives the signatures,
he unblinds and stores them together with the coins.
Components:

– Customer

– Exchange

I Deposit Protocol: During the Deposit, the exchange verifies the coin signature de-
rived using the blind RSA signature scheme.
Components:

– Exchange

I Refresh Protocol: The refresh protocol is used to derive a new coin from an old one
which was partially spent. Parts of the protocol are similar to the withdraw protocol,
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but it is more complex due to the added DH lock and cut-and-choose.
Components:

– Customer

– Exchange

I Tipping: Tipping is a variation of the withdraw protocol where the message contain-
ing the blinded planchets is transmitted to the merchant, who signs them using his
reserve private, key and returns the signatures back to the customer. Here, the de-
tails from the withdraw protocol apply.
Components:

– Customer

– Exchange

I Recoup Protocol: The recoup protocol distinguishes three different cases, which ei-
ther use the refresh protocol or disclose either the withdraw transcript or refresh
protocol transcript to the exchange.
Components:

– Customer

– Exchange

3.2. Protocol Changes

The goal of the thesis is to add support for the Clause Blind Schnorr Signature scheme to
Taler, besides the existing RSA Blind Signatures implementation (see section 2.2.4). For
the design of the Clause Blind Schnorr Signatures the existing protocols with RSA Blind
Signatures were redesigned.
The goal of the blind signature is to keep the exchange from knowing which coin a user

withdraws and thus preventing the exchange linking a coin to a user. The biggest impact
is on the withdrawal and refresh protocols, but all protocols that include some operation
around denomination signatures are affected.
During the thesis the protocols will be redesigned, implemented and the differences to

the current version will be outlined. These results will be delivered to the Taler team.
Feedback is very important when (re)designing protocols. For that reason the redesigned
protocols were discussed and reviewed with Christian Grothoff multiple times.
As signature scheme the Clause Blind Schnorr Signature Scheme described in section

2.2.4 was chosen for multiple reasons. First of all it is currently considered to be secure
(see [FPS19]). Schnorr Signatures on Curve25519 are much shorter than RSA signatures.
This should provide notable performance improvements in speed and storage, and there-
fore scales better. The paper describes a security analysis of the Blind Schnorr Signature
scheme and introduces a modification (the ”clause” part in the name) that is resistant to
Wagner’s algorithm (which solves ROS problem).
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Curve25519 [Ber06] will be used for the implementation because it is a widely accepted
curve (see [BL21], [RFC7748]) and is already used by Taler (Taler uses Ed25519 which is
built upon Curve25519).

3.2.1. Withdraw Protocol

The modified protocol using the Clause Blind Schnorr Signature Scheme is described in
figures 3.1 and 3.2.
The proposed change introduces an additional round trip. It must be prevented that

the exchange has to track sessions or persist values during the first stage 3.1, while still
ensuring abort-idempotency. In order to ensure abort-idempotency, the exchange has to
generate the same R0, R1 for the same withdrawal request, while r0, r1 still needs to be
unpredictable for the customer. For this reason awithdrawal-nonce combinedwith a HKDF
comes into play. The redesigned protocol makes extensive use of HKDF’s functionality as
PRNG1 and one-way function, thus random becomes unpredictable.
In the beginning of the protocol, the customer generates a coin key pair. Its private key

is used to generate the withdraw-nonce nw and the blinding factors α0, α1, β0, β1. The
exchange uses the withdraw nonce together with the reserve key and a long-term secret to
generate r0, r1. The coin and denomination private keys can be used as long-term secrets
due to the one-way property of the HKDF.
Another question evolved around which key to use for the derivation of r0, r1. Obvious

options are the denomination key or the exchange’s online signing key. The denomination
key was chosen because it has the recopu protocol in place that would handle coin recovery
in case of a key compromise and subsequent revocation.

3.2.2. Deposit Protocol

The deposit protocol remains unchanged, except for the verification of the coin signature.
To verify the signature, the exchange has to check if the following equation holds:

s′G = R′ + c′Dp

= R′ +H(R′, Cp)Dp

s′, R′ together form the signature, Dp is the denomination public key and Cp is the coin
public key.
Further details regarding the verification process can be found in section 2.2.4.

3.2.3. Refresh Protocol

The refresh protocol blindly signs the new derived coins. The replacement of RSA Blind
Signatures with the Clause Blind Schnorr Signature Scheme (see 2.2.4) makes the refresh
protocol a bit more complex.

1Pseudo Random Number Generator
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Customer Exchange
knows: knows:
reserve keys ws,Wp reserve public keyWp

denomination public keyDp denomination keys ds, Dp

generate withdraw secret:
ω := randombytes(32)
persist 〈ω,Dp〉
nw := HKDF(256, ω, ”n”)

nw,Dp−−−−−−−−−−−→
verify ifDp is valid
r0 := HKDF(256, nw||ds, ”wr0”)
r1 := HKDF(256, nw||ds, ”wr1”)
R0 := r0G
R1 := r1G

R0,R1←−−−−−−−−−−−
derive coin key pair :
cs := HKDF(256, ω||R0||R1, ”cs”)
Cp := Ed25519.GetPub(cs)
blind:
bs := HKDF(256, ω||R0||R1, ”b-seed”)
α0 := HKDF(256, bs, ”a0”)
α1 := HKDF(256, bs, ”a1”)
β0 := HKDF(256, bs, ”b0”)
β1 := HKDF(256, bs, ”b1”)
R′

0 := R0 + α0G+ β0Dp

R′
1 := R1 + α1G+ β1Dp

c′0 := H(R′
0, Cp)

c′1 := H(R′
1, Cp)

c0 := c′0 + β0 mod p
c1 := c′1 + β1 mod p

Continued in figure 3.2

Figure 3.1.: Withdrawal process using Clause Blind Schnorr Signatures part 1
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Customer Exchange
knows: knows:
reserve keys ws,Wp reserve public keyWp

denomination public keyDp denomination keys ds, Dp

Continuation of figure 3.1

sign with reserve private key:
ρW := 〈nw, Dp, c0, c1〉
σW := Ed25519.Sign(ws, ρW )

Wp,σW ,ρW−−−−−−−−−−−→
〈nw, Dp, c0, c1〉 := ρW
verify ifDp is valid
check Ed25519.Verify(Wp, ρW , σW )
b := HKDF(1, nw||ds, ”b”)
s← GetWithdraw(nw, Dp)
if s = ⊥
check !NonceReuse(nw, Dp, ρW )
rb := HKDF(256, nw||ds, ”rb”)
s := rb + cbds mod p
decrease balance if sufficient and
persist NonceUse 〈nw, Dp, ρW 〉
persist 〈Dp, s〉
endif

b,s←−−−−−−−−−−−
verify signature:
check if sG = Rb + cbDp

unblind:
s′ := s+ αb mod p
verify signature:
check if s′G = R′

b + c′bDp

σC := 〈R′
b, s

′〉
resulting coin: cs, Cp, σC , Dp

Figure 3.2.: Withdrawal process using Clause Blind Schnorr Signatures part 2
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RefreshDerive Schnorr

The RefreshDerive protocol is described in figure 3.3. For this protocol, the main change is
that more values need to be derived somehow. These blinding factors are also derived from
x. Then the challenges c0 and c1 are generated as in the Clause Blind Schnorr Signature
Scheme.

RefreshDerive(t,Dp(t), Cp, R0, R1)

T := Curve25519.GetPub(t)
x := ECDH-EC(t, Cp)

c′s := HKDF(256, x, ”c”)
C ′

p := Ed25519.GetPub(c′s)

bs := HKDF(256, x||R0||R1, ”b-seed”)
α0 := HKDF(256, bs, ”a0”)
α1 := HKDF(256, bs, ”a1”)
β0 := HKDF(256, bs, ”b0”)
β1 := HKDF(256, bs, ”b1”)
R′

0 = R0 + α0G+ β0Dp

R′
1 = R1 + α1G+ β1Dp

c′0 = H(R′
0, C

′
p)

c′1 = H(R′
1, C

′
p)

c0 = c′0 + β0 mod p

c1 = c′1 + β1 mod p

return 〈T, c′s, C ′
p, c0, c1〉

Figure 3.3.: The RefreshDerive replaced with Schnorr blind signature details. As before the uses the seed s on the
dirty coin for generating the new coin. The new coin needs to be signed later on with the denomination
key.

Refresh Protocol

In the commit phase (see figure 3.4) there needs to be requested an R0 and R1 before
deriving the new coins. There now needs to be calculated two different commit hashes, one
for c0 and one for c1. The exchange needs to additionally generate a random b ← {0, 1}
to choose a cb. The reveal phase (see figure 3.5) now is continued only with the chosen
cb. In the reveal phase, the RSA signing and unblinding is exchanged with Schnorr’s blind
signature counterparts.
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Customer Exchange
knows: knows:
denomination public keyDp old denomination keys ds(0)Dp(0)

coin0 = 〈Dp(0), c
(0)
s , C

(0)
p , σ

(0)
c 〉 new denomination keys ds, DP

nr := randombytes(32)
persist 〈nr, Dp〉

nr,Dp−−−−−−−−−−−→
verify ifDp is valid
r0 := HKDF(256, nr||ds, ”mr0”)
r1 := HKDF(256, nr||ds, ”mr1”)
R0 := r0G
R1 := r1G

R0,R1←−−−−−−−−−
for i = 1, . . . , κ :

ti := HKDF(256, c(0)s , nr||R0||R1, ”ti”)
Xi := RefreshDerive(ti, Dp, C

(0)
p , R0, R1)

(Ti, c
(i)
s , C

(i)
p , c0, c1) := Xi

endfor
hT := H(T1, . . . , Tk)
hc0 := H(c01 , . . . , c0k)
hc1 := H(c11 , . . . , c1k)
hc := H(hc0 , hc1 , nr)
hC := H(hT , hc)

ρRC := 〈hC , Dp, Dp(0), C
(0)
p , σ

(0)
C 〉

σRC := Ed25519.Sign(c(0)s , ρRC)
Persist refresh-request
〈nr, R0, R1, ρRC , σRC〉

Continued in figure 3.5

Figure 3.4.: Refresh protocol (commit phase part 1) using Clause Blind Schnorr Signatures
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Customer Exchange
Continuation of

figure 3.4

ρRC ,σRC ,nr−−−−−−−−−→

〈hC , Dp, Dp(0), C
(0)
p , σ

(0)
C 〉 := ρRC

check Ed25519.Verify(C(0)
p , σRC , ρRC)

γ ← GetOldRefresh(ρRC)
Comment: GetOldRefresh(ρRC 7→
{⊥, γ})
if γ = ⊥
v := Denomination(Dp)

check IsOverspending(C(0)
p , Dp(0), v)

verify ifDp is valid
check !NonceReuse(nr, Dp, ρRC)

check Schnorr.Verify(Dp(0), C
(0)
p , σ

(0)
C )

MarkFractionalSpend(C(0)
p , v)

γ ← {1, . . . , κ}
persist NonceUse 〈nr, Dp, ρRC〉
persist refresh-record 〈ρRC , γ〉

γ←−−−−−−−−−
check IsConsistentChallenge(ρRC , γ)
Comment: IsConsistentChallenge
(ρRC , γ) 7→ {⊥,>}

Persist refresh-challenge〈ρRC , γ〉
S := 〈t1, . . . , tγ−1, tγ+1, . . . , tκ〉
ρL := 〈C(0)

p , Dp, Tγ , c0γ , c1γ〉
ρRR := 〈ρL, S〉
σL := Ed25519.Sign(c(0)s , ρL)

ρRR,ρL,σL−−−−−−−−−−−→

Continued in
figure 3.6

Figure 3.5.: Refresh protocol (commit phase part 2) using Clause Blind Schnorr Signatures
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Customer Exchange
Continuation of

figure 3.5

ρRR,ρL,σL−−−−−−−−−−−→

〈C(0)
p , Dp, Tγ , c0γ , c1γ〉 := ρL

〈T ′
γ , c0γ , c1γ , S〉 := ρRR

〈t1, . . . , tγ−1, tγ+1, . . . , tκ〉 := S

check Ed25519.Verify(C(0)
p , σL, ρL)

b := HKDF(1, nr||ds(i), ”b”)
for i = 1, . . . , γ − 1, γ + 1, . . . , κ

Xi := RefreshDerive(ti, Dp, C
(0)
p

, R0, R1)

〈Ti, c
(i)
s , C

(i)
p , c1i, c2i〉 := Xi

endfor
h′T = H(T1, . . . , Tγ−1, T

′
γ , Tγ+1, . . . , Tκ)

h′c0 := H(c01 , . . . , c0k)
h′c1 := H(c11 , . . . , c1k)
h′c := H(hc0 , hc1 , nr)
h′C = H(h′T , h

′
c)

check hC = h′C
rb := HKDF(256, nr||ds, ”mrb”)
s
(γ)
Cp

= rb + cbγds mod p

persist 〈ρL, σL, S〉
b,s

(γ)
C←−−−−−−−−−−−

unblind:
s
′(γ)
C := s

(γ)
C + αb mod p

verify signature:
check if s′(γ)C G ≡ R′

b + c′0γDp

σ
(γ)
C := 〈s′(γ)C , R′

b〉
Persist coin〈Dp, c

(γ)
s , C

(γ)
p , σ

(γ)
C 〉

Figure 3.6.: Refresh protocol (reveal phase) using Clause Blind Schnorr Signatures
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Linking Protocol

The beginning of the linking protocol (see figure 3.7) is the same as in the current protocol.
After the customer received the answer L the only difference is in obtaining the coin. To
re-obtain the derived coin, the same calculations as in 3.3 are made.

Customer Exchange
knows: knows:
coin0 = 〈Dp(0), c

(0)
s , C

(0)
p , σ

(0)
C 〉

Cp(0)−−−−−−−−−−−→
L := LookupLink(Cp(0))

Comment: LookupLink(C(0)
p ) 7→

{〈ρ(i)L , σ
(i)
L , σ

(i)
C , b〉}

L←−−−−−−−−−−−

for 〈ρ(i)L , σ
(i)
L , σ

(i)
C , b〉 ∈ L

〈Ĉ(i)
p , D

(i)
p , T

(i)
γ , c0

(i)
γ , c1

(i)
γ , nr〉 := ρ

(i)
L

〈s(i)C , R
(i)
b 〉 := σ

(i)
C

check Ĉ
(i)
p ≡ C

(0)
p

check Ed25519.Verify(C(0)
p , ρ

(i)
L , σ

(i)
L )

〈s(i)C , R
(i)
b 〉 := σ

(i)
C

xi := ECDH(c(0)s , T
(i)
γ )

c
(i)
s := HKDF(256, x, ”c”)
C

(i)
p := Ed25519.GetPub(c(i)s )

b
(i)
s := HKDF(256, xi||R(i)

0 ||R
(i)
1 , ”b-seed”)

αb := HKDF(256, b(i)s , ”ab”)
βb := HKDF(256, b(i)s , ”bb”)
R′(i)

b = R
(i)
b + αbG+ βbD

(i)
p

c′b = H(R′
b, C

(i)
p )

cb = c′b + βb mod p

s
′(i)
C := s

(i)
C + αb mod p

σ
(i)
C := 〈s′(i)C , R′

b〉
check s′

(i)
C G ≡ R′(i)

b + c′bD
(i)
p

(Re-)obtain coin〈D(i)
p , c

(i)
s , C

(i)
p , σ

(i)
C 〉

Figure 3.7.: Linking protocol using Clause Blind Schnorr Signatures

3.2.4. Tipping

Tipping remains unchanged, except for the content of the message ρW = Dp, c0, c1 signed
by the merchant using its reserve private key.
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3.2.5. Recoup Protocol

The recoup protocol distinguishes three different cases, which all depend on the state of
a coin whose denomination key has been revoked. The following listing outlines the nec-
essary changes on the protocol, please refer to Dold’s documentation section 2.2.1 [Dol19]
for details regarding the different cases.

I The revoked coin has never been seen by the exchange:
Thewithdraw transcript (and verification)must be adjusted in order for the exchange
to be able to retrace the blinding.

I The coin has been partially spent:
In this case the refresh protocol will be invoked on the coin. The necessary changes
are outlined in 3.2.3.

I The revoked coin has never been seen by the exchange and resulted from a refresh
operation:
The refresh protocol transcript and its blinding factors must be adjusted to consider
the changes in the blind signature scheme.
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The proposed Taler protocols using the Clause Blind Schnorr Signature Scheme will be im-
plemented as an additional option besides the existing RSA Blind Signatures variant of the
protocol as suggested by Christian Grothoff. A Taler Exchange operator should be able to
configure whether he wants to use RSA Blind Signatures or Clause Blind Schnorr Signa-
tures.
This variant allows to choose the signature scheme globally or per denomination. Further-
more, it allows a change of signature scheme in a non-breaking way by revoking (or letting
expire) a denomination and offering new denominations with the other scheme.
The following key points are specified in this chapter:

I Architecture of the different components

I Explain and specify needed changes

I Data strucutures

I Public APIs1

I Persistence

I Used libraries

4.1. Architecture

Before specifying the implementation of the different protocols, a deeper understanding of
the technical architecture of Talers components is needed. this section introduces the ar-
chitecture of the exchange and wallet components and explains where the needed changes
need to be implemented on a high-level.

4.1.1. Exchange

An introduction to the exchange can be found in section 2.1.1. An exchange operator needs
to run and maintain some additional services besides Taler’s exchange. Although this is
not directly relevant for the implementation, it helps to better understand the environment
in which the exchange runs. The perspective of an exchange operator can be seen in figure
4.1.

1Application Programming Interfaces
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Figure 4.1.: Taler exchange operator architecture (source: [Tal21a])

The software architecture of the exchange can be seen in figure 4.2. The API runs under
the httpd service, where the API endpoints need to be adjusted/added to incorporate the
changes of this thesis. The httpd server has no access to the private keys of the denomina-
tion and online signing keys. Only the corresponding security module can perform opera-
tions requiring the private key. Further the keys are also managed by these security mod-
ules. To support Clause Blind Schnorr Signatures a new security module, which performs
signature operations, is added. To persist the new data structures, the postgres helpers
need to be adjusted to serialize/deserialize the new Clause Blind Schnorr Signatures data
structures. More details on what changes are needed in these places is discussed in the
following sections.

4.1.2. Wallet

The architecture of the wallet implementation (as seen in figure 4.3) is quite straightfor-
ward. To add support for Clause Blind Schnorr Signatures in the wallet, the cryptographic
routines need to be reimplemented in Typescript. Taler uses tweetnacl [Dan14] which pro-
vides functionality for the group operations. There are existing HKDF and FDH implemen-
tations, that can be reused.
Furthermore, the Taler protocols need to be adjusted to support Clause Blind Schnorr Sig-
natures in the wallet-core.
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Figure 4.2.: Taler exchange architecture (source: [Tal21a])
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Figure 4.3.: Taler wallet architecture (source: [Tal21a])

4.2. Persistence

The Clause Blind Schnorr Signature scheme is quite different to RSA Blind Signatures. De-
spite the differences, the database model does not need to be changed. The only change
needed an additional type field, specifying whether RSA or CS is used as signature algo-
rithm. To persist the new structs introduced with the support for Clause Blind Schnorr
Signatures, only the postgres helpers need to support serialization and deserialization of
the new structs.
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4.3. Testing

We will partially use test-driven development, meaning that we will write tests (at least
for the known good case) before implementing functions, and extend them during and
after development. This allows us to check the functionality (code section, function(s))
during development, while being able to extend testing whenever we identify new test
cases during development.
Test cases can be used to verify different aspects of a functionality. These are the ones

we will focus on.

I Knowngood: Known good cases testwhether a functionalityworks as expected. They
are the most useful during development, because they indicate whether the code is
working as expected.

I Known Bad: Known bad cases test whether functionality that is known not to work
behaves as expected.

I Determinism: This case type checks whether the same input leads to the same out-
put. It is important for code thatmustwork deterministic (same output), non-deterministic
(e.g. random output) or based on a state that impacts the functionality.

I Performance testing: Performance testing is used to gather timing information that
can be used to identify functionality with long duration, or to compare performance
between different implementations or major changes. We will restrict performance
testing to the comparison of the Blind RSA Signature Scheme and the Clause Blind
Schnorr Signature Scheme.

4.4. Signature Scheme Operations in GNUnet

The signature scheme operations implemented are needed in all other parts of the im-
plementation. Taler’s cryptographic primitives (e.g. RSA Blind Signatures, HKDF, hash
functions) are mostly implemented in GNUnet utils, therefore the Clause Blind Schnorr
Signature routines will be implemented in GNUnet too. It is important to provide a clear
API for the cryptographic routines and to test them thoroughly. Libsodium will be used
for finite field arithmetic ([doc]) and for other functionality when available (e.g. for key
generation). Thus, a widely used and well tested cryptographic library is used for group
operations.
For Full-DomainHash andHKDF existing implementations provided by GNUnet are used.

The HKDF is used with SHA-512 for the extraction phase and SHA-256 for the expansion
phase.

4.4.1. Data Structures

Libsodium represents Ed25519 points and scalars as 32-byte char arrays. To provide a
more user-friendly API, structs were created to represent each type. For example struct
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GNUNET_CRYPTO_CsPrivateKey or struct GNUNET_CRYPTO_RSecret The main reason is
to increase readability and to prevent misusage of the API. Unlike RSA, our Clause Blind
Schnorr Signatures on Ed25519 data structures have a fixed sizes. The different data struc-
tures can be found in table 4.1.

Values Data Structure Data Type

Curve25519 Scalar GNUNET_CRYPTO_Cs25519Scalar 32 byte char array

Curve25519 Point GNUNET_CRYPTO_Cs25519Point 32 byte char array

Private Key GNUNET_CRYPTO_CsPrivateKey GNUNET_CRYPTO_Cs25519Scalar

Public Key GNUNET_CRYPTO_CsPublicKey GNUNET_CRYPTO_Cs25519Point

α, β GNUNET_CRYPTO_CsBlindingSecret 2x GNUNET_CRYPTO_Cs25519Scalar

r GNUNET_CRYPTO_CsRSecret GNUNET_CRYPTO_Cs25519Scalar

R GNUNET_CRYPTO_CsRPublic GNUNET_CRYPTO_Cs25519Point

c GNUNET_CRYPTO_CsC GNUNET_CRYPTO_Cs25519Scalar

s GNUNET_CRYPTO_CsBlindS GNUNET_CRYPTO_Cs25519Scalar

s′ GNUNET_CRYPTO_CsS GNUNET_CRYPTO_Cs25519Scalar

σ := 〈s′, R′〉 GNUNET_CRYPTO_CsSignature GNUNET_CRYPTO_Cs25519Scalar

GNUNET_CRYPTO_Cs25519Point

Nonce GNUNET_CRYPTO_CsNonce 32 byte char array

Table 4.1.: Data structures for cryptographic routines

4.4.2. Library API

The public API and related data structures are specified in the C header file src/include/
gnunet_crypto_lib.h in the GNUnet repository [Repl]. It was developed in multiple iter-
ations based on feedback from Christian Grothoff. The complete C header API can be found
in the repository. This section provides an overview of the implemented crypto API.
Some design decisions need to be explained further:

I In order to prevent misusage of our implementation and increase readability, the
functions that represent different stages in the signature scheme takes different data
types as in- and output. Internally most variables are either scalars or curve points
(except for nonces, secrets and messages).

I Operations that are performed twice in the Clause Blind Schnorr Signature Scheme
(e.g. derivation of r) do not have to be called twice. Instead, the API returns an array
of two instead of a single value.
For these functions, we also optimized the HKDF (as proposed by Christian Grothoff).
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Instead of calling HKDF twice (with different salts, e.g. ”r0” and ”r1”), we call it one
time (e.g. with salt ”r”) and double the output length.

I The cryptographic hash function used to derive c′ (hash of R′ and message) must
map the results into the main subgroup for scalars, meaning that it has to be a FDH
(see 2.2.3).

The following API examples should provide an overview on how the API works and how
to use it.
First of all the APImust provide functionality to create a Curve25519 keypair as in listing

4.1� �
1 /**
2 * Create a new random private key .
3 *
4 * @param[ out ] pr iv where to write the fresh private key
5 */
6 void
7 GNUNET_CRYPTO_cs_private_key_generate (
8 struct GNUNET_CRYPTO_CsPrivateKey *priv);
9
10
11 /**
12 * Extract the public key of the given private key .
13 *
14 * @param priv the private key
15 * @param[ out ] pub where to write the public key
16 */
17 void
18 GNUNET_CRYPTO_cs_private_key_get_public (
19 const struct GNUNET_CRYPTO_CsPrivateKey *priv,
20 struct GNUNET_CRYPTO_CsPublicKey *pub);� �

Listing 4.1: GNUnet create keypair API

The signer needs an API to generate his secret r and calculate his public point R. As
specified in the redesign of the protocols, the r must not be chosen randomly because we
need to provide abort-idempotency. However, the secret r still needs to be unpredictable
and look random to the client. The r_derive API derives such a secret r from a nonce and a
long-term secret with HKDF. Further, the API ensures that a caller must generate two secret
r as in the Clause Blind Schnorr Signature scheme. This should discourage people from
using the unsecure Blind Schnorr Signature scheme. See 4.2.� �

1 /**
2 * Derive a new secret r pair r0 and r1 .
3 * In or ig ina l papers r i s generated randomly
4 * To provide abort−idempotency , r needs to be derived but s t i l l needs to be UNPREDICTABLE
5 * To ensure unpred ic tab i l i ty a new nonce should be used when a new r needs to be derived .
6 * Uses HKDF in te rna l l y .
7 * Comment : Can be done in one HKDF shot and sp l i t output .
8 *
9 * @param nonce i s a random nonce
10 * @param l t s i s a long−term−secret in form of a private key
11 * @param[ out ] r array containing derived secrets r0 and r1
12 */
13 void
14 GNUNET_CRYPTO_cs_r_derive (const struct GNUNET_CRYPTO_CsNonce *nonce,
15 const struct GNUNET_CRYPTO_CsPrivateKey *lts,
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16 struct GNUNET_CRYPTO_CsRSecret r[2]);
17
18
19 /**
20 * Extract the public R of the given secret r .
21 *
22 * @param r _p r i v the private key
23 * @param[ out ] r_pub where to write the public key
24 */
25 void
26 GNUNET_CRYPTO_cs_r_get_public (const struct GNUNET_CRYPTO_CsRSecret *r_priv,
27 struct GNUNET_CRYPTO_CsRPublic *r_pub);� �

Listing 4.2: GNUnet r derive API

Same as the r_derive, the blinding secrets are also derived and not generated randomly.
The blinding secrets are generated by a client who provides a secret as seed to derive the
secrets from as in listing 4.3.� �

1 /**
2 * Derives new random blinding factors .
3 * In or ig ina l papers blinding factors are generated randomly
4 * To provide abort−idempotency , blinding factors need to be derived but s t i l l need to be UNPREDICTABLE
5 * To ensure unpred ic tab i l i ty a new nonce has to be used .
6 * Uses HKDF in te rna l l y
7 *
8 * @param secret i s secret to derive blinding factors
9 * @param secre t _ l en secret length
10 * @param[ out ] bs array containing the two derivedGNUNET_CRYPTO_CsBlindingSecret
11 */
12 void
13 GNUNET_CRYPTO_cs_blinding_secrets_derive (
14 const struct GNUNET_CRYPTO_CsNonce *blind_seed,
15 struct GNUNET_CRYPTO_CsBlindingSecret bs[2]);� �

Listing 4.3: GNUnet blinding secrets derive API

Further the Clause Blind Schnorr API provides an API to calculate the two blinded c of
the message with the two public R, the blinding factors and the public key as in listing
4.4.� �

1 /**
2 * Calculate two blinded c ’ s
3 * Comment : One would be insecure due to Wagner ’ s algorithm solving ROS
4 *
5 * @param bs array of the two blinding factor s t ruc t s each containing alpha and beta
6 * @param r_pub array of the two signer ’ s nonce R
7 * @param pub the public key of the signer
8 * @param msg the message to blind in preparation for signing
9 * @param msg_len length of message msg
10 * @param[ out ] bl inded_c array of the two blinded c ’ s
11 */
12 void
13 GNUNET_CRYPTO_cs_calc_blinded_c (
14 const struct GNUNET_CRYPTO_CsBlindingSecret bs[2],
15 const struct GNUNET_CRYPTO_CsRPublic r_pub[2],
16 const struct GNUNET_CRYPTO_CsPublicKey *pub,
17 const void *msg,
18 size_t msg_len,
19 struct GNUNET_CRYPTO_CsC blinded_c[2]);� �

Listing 4.4: GNUnet calculate blinded c API
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The sign function in our API is called sign_derive, since we derive b ∈ {0, 1} from the
long-term secret and then calculate the signature scalar of cb. See listing 4.5.� �

1 /**
2 * Sign a blinded c
3 * This function derives b from a nonce and a longterm secret
4 * In or ig ina l papers b i s generated randomly
5 * To provide abort−idempotency , b needs to be derived but s t i l l need to be UNPREDICTABLE .
6 * To ensure unpred ic tab i l i ty a new nonce has to be used for every signature
7 * HKDF is used in te rna l l y for der ivat ion
8 * r0 and r1 can be derived pr ior by using GNUNET_CRYPTO_cs_r_derive
9 *
10 * @param priv pr ivate key to use for the signing and as LTS in HKDF
11 * @param r array of the two secret nonce from the signer
12 * @param c array of the two blinded c to sign c_b
13 * @param nonce i s a random nonce
14 * @param[ out ] b l inded_s ignature_scalar where to write the signature
15 * @return 0 or 1 for b ( see Clause Blind Signature Scheme)
16 */
17 int
18 GNUNET_CRYPTO_cs_sign_derive(
19 const struct GNUNET_CRYPTO_CsPrivateKey *priv,
20 const struct GNUNET_CRYPTO_CsRSecret r[2],
21 const struct GNUNET_CRYPTO_CsC c[2],
22 const struct GNUNET_CRYPTO_CsNonce *nonce,
23 struct GNUNET_CRYPTO_CsBlindS *blinded_signature_scalar);� �

Listing 4.5: GNUnet sign API

The API for the unblind operation can be called with the blinding secrets and the signa-
ture scalar received from the signer as in listing 4.6.� �

1 /**
2 * Unblind a blind −signed signature using a c that was blinded
3 *
4 * @param bl inded_s ignature_scalar the signature made on the blinded c
5 * @param bs the blinding factors used in the blinding
6 * @param[ out ] s ignature_scalar where to write the unblinded signature
7 */
8 void
9 GNUNET_CRYPTO_cs_unblind (
10 const struct GNUNET_CRYPTO_CsBlindS *blinded_signature_scalar,
11 const struct GNUNET_CRYPTO_CsBlindingSecret *bs,
12 struct GNUNET_CRYPTO_CsS *signature_scalar);� �

Listing 4.6: GNUnet unblind API

The verify API takes the message and its signature with the public key and returns
GNUNET_OK for a valid signature and GNUNET_SYSERR otherwhise. See listing 4.7.� �

1 /**
2 * Ver i fy whether the given message corresponds to the given signature and the
3 * signature i s val id with respect to the given public key .
4 *
5 * @param sig signature that i s being validated
6 * @param pub public key of the signer
7 * @param msg is the message that should be signed by @a sig (message i s used to calculate c )
8 * @param msg_len i s the message length
9 * @returns #GNUNET_YES on success , #GNUNET_SYSERR i f signature inval id
10 */
11 enum GNUNET_GenericReturnValue
12 GNUNET_CRYPTO_cs_verify (const struct GNUNET_CRYPTO_CsSignature *sig,
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13 const struct GNUNET_CRYPTO_CsPublicKey *pub,
14 const void *msg,
15 size_t msg_len);� �

Listing 4.7: GNUnet verify API

4.4.3. Testing

For digital signature schemes, the most important test case is the known good case where
a signature is created and successfully validated. This test case already tests very much
in a digital signature scheme. When the signature creation or verification has a bug, a
test will not succeed, because the mathematic operations need to be correct to be validated
correctly.
The cryptographic operations are further tested for deterministicy (where it applies),

meaning that multiple function calls with the same input must lead to the same output.
Since libsodium is used for the finite field arithmetic operations and is a well tested

library, many cryptographic tests are already done in libsodium.
The performance ismeasured in a benchmark to see howperformant Clause Blind Schnorr

Signatures are in comparison to the RSA Blind Signature Scheme.

4.5. Taler Cryptographic Utilities

Taler provides utility functions to support cryptographic operations.
This chapter provides an overview of these utility functions and about the functionality
they provide.

4.5.1. Planchet Creation

In crypto.c many utility functions are provided to create planchets (for planchet details
see 2.8), blinding secrets and much more. One difference between RSA Blind Signatures
and Clause Blind Schnorr Signatures is, that the coin private key and RSA blinding secret
can be created at the same point in time, since the RSA blinding secret is created randomly.
However, for Clause Blind Schnorr secrets an additional step is needed, the public R0 and
R1 are required to calculate the blinding seed to derive the secrets.
A planchet in the Clause Blind Schnorr Signature Scheme can be created as followed

(implementation details ommited).

1. Create planchet with new EdDSA private key

2. Derive withdraw nonce

3. Request public R0, R1 from signer

4. Derive blinding seed
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5. Prepare (blind) the planchet

After the planchet is created, it is sent to the exchange to be signed.

4.5.2. Taler CS Security Module

The exchange segregates access to the private keys with separate security module pro-
cesses. The security module has sole access to the private keys of the online signing
keys and thus, only a security module can create signatures. The different taler-exchange-
secmod processes (separated by signature scheme) are managing the exchanges online
signing keys. The RSA denomination keys for example are managed with taler-exchange-
secmod-rsa.
Now a new taler-exchange-secmod-cs needs to be created for managing the Clause Blind

Schnorr Signatures denomination keys. These security modules run on the same machine
as the httpd process and they use UNIX Domain Sockets as method for Inter Process Com-
munication. A short introduction about UNIX Domain Sockets can be found in the blog
post [Lim22]. Furthermore, the security modules are used to protect the online signing
keys by performing the actual signing operations in the dedicated taler-secmod-cs pro-
cess. This abstraction makes it harder for an attacker who has already compromised the
http daemon to gain access to the private keys. However, such an attacker would still be
able to sign arbitrary messages (see [SAd]). A crypto helper exists for each security mod-
ule, these functions can be called inside the exchange for operations requiring the private
online signing keys. The new Clause Schnorr security module and corresponding crypto
helper provides the following functionality:

I Private Key Management and creation

I Request public R0, R1

I Request a signature of a c0, c1 pair

I Revoke an online signing key

4.5.3. Testing

All of the operations have tests and are included in unit tests. As a template for testing,
the existing RSA tests were used and adjusted for Clause Blind Schnorr Signatures.

4.6. Denomination Key Management

Since we introduce a type of denomination keys, related operations like connection to the
Clause Blind Schnorr Signatures security module, making the denominations available
for customers, persisting them in the database and offline signing using the exchange’s
offline signature key have to be extended to incorporate the Clause Blind Schnorr Signature
Scheme.
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The exchange offline signer requests the future, not yet signed keys by calling GET /management/
keys as described in table 4.2.

GET /management/keys

Field Value

future_denoms Information about denomination keys

future_signkeys Information about exchange online signing keys

master_pub Exchange’s master public key

denom_secmod_public_key RSA security module public key

denom_secmod_cs_public_key Clause Blind Schnorr Signatures security module public key

signkey_secmod_public_key Online singing security module public key

Table 4.2.: GET /management/keys response data

It then signs the keys and returns them using POST on the same URL2 with the data de-
scribed in table 4.3.

POST /management/keys

Field Value

denom_sigs Denomination key signatures

signkey_sigs Online signing key signatures

Table 4.3.: POST /management/keys response data

Wallets can then call GET /keys to obtain the current denominations and other infor-
mation, the response is described in table 4.4.

GET /keys

4.7. New Endpoint for R

The withdraw and refresh protocols using the Claude Blind Schnorr Signature Scheme in-
troduce an additional round trip. In this round trip, the customer requests twoR from the
exchange. The exchange uses a secret r to calculate R := rG.
In contrast to the plain Clause Blind Schnorr Signature Scheme (see 2.2.4), r isn’t gener-
ated randomly but instead derived using a HKDF with a nonce from the customer and a
denomination private key (secret only known by the exchange). This still ensures that the
private r can’t be anticipated, but has multiple advantages regarding abort-idempotency.
2uniform resource locator
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Field Value

version Exchange’s protocol version

currency Currency

master_public_key Exchange’s master public key

reserve_closing_delay Delay before reserves are closed

signkeys Exchange’s online signing public keys

recoup Revoked keys

denoms List of denominations

auditors Auditors for this exchange

list_issue_date Timestamp

eddsa_pub Exchange’s online signing public key

eddsa_sig Signature (use ”eddsa_pub” for verification)

Table 4.4.: GET /keys response data

Abort-idempotency means that a withdraw or refresh operation can be aborted in any step
and later tried again (using the same values) without yielding a different result. The chal-
lenge for r,R regarding abort-idempotency is to ensure that the same r is used during the
complete signature creation process.
The only drawback of this process is that we have to ensure that the same nonce and

secret aren’t used for different withdraw- or refresh-operations. This is done during sig-
nature creation and will be described in the withdraw protocol section 4.8.

4.7.1. Public APIs and Data Structures

This is a new functionality, meaning a new endpoint accessible to customers has to be
introduced. It will be made available in the exchange HTTP server under POST /csr and
will take the input parameters described in table 4.5 (as JSON).

Field Type Value

nonce String 32 Bytes encoded in Crockford base32 Hex

denom_pub_hash String Denomination Public Key encoded in Crockford base32 Hex

Table 4.5.: POST /csr request data

The exchange will then check the denomination and return one of these HTTP status
codes:

I 200 (HTTP_OK): Request Successful
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I 400 (BAD_REQUEST): Invalid input parameters

I 404 (NOT_FOUND): Denomination unknown or not Clause Schnorr

I 410 (GONE): Denomination revoked/expired

I 412 (PRECONDITION_FAILED): Denomination not yet valid

When the request was successful, the exchange returns the data described in table 4.6
(as JSON).

Field Type Value

r_pub_0 String 32 Bytes encoded in Crockford base32 Hex

r_pub_1 String 32 Bytes encoded in Crockford base32 Hex

Table 4.6.: POST /csr response data

4.7.2. Persistence

This API does not persist anything. This is because the resulting R0, R1 are derived and
can be derived in a later step.

4.8. Withdraw Protocol

The withdraw protocol has been introduced in section 2.3.1. For the Clause Blind Schnorr
Signature Scheme necessary adjustments are described in section 3.2.1.

4.8.1. Public APIs and Data Structures

The existing endpoint is available under POST /reserves/[reserve]/withdraw where
”reserve” is the reserve public key encoded as Crockford base32. It takes the following in-
put parameters described in table 4.7 as JSON.

POST /reserves/[reserve]/withdraw

Field Value

denom_pub_hash Denomination Public Key

coin_ev RSA blinded coin public key

reserve_sig Signature over the request using the reserve’s private key

Table 4.7.: Withdraw request data
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In order to facilitate parsing, Christian Grothoff suggested to include the cipher type in
the ”coin_ev” field, thus creating a nested JSON (as described in table 4.8).

Field Type Value

cipher Integer Denomination cipher: 1 stands for RSA

rsa_blinded_planchet String RSA blinded coin public key

Table 4.8.: Withdraw ”coin_ev” field (RSA)

For the Clause Schnorr implementation, the field ”rsa_blinded_planchet”will be replaced
with the necessary values as described in table 4.9.

Field Type Value

cipher Integer Denomination cipher: 2 stands for Clause Blind Schnorr Signatures

cs_nonce String 32 Bytes encoded in Crockford base32 Hex

cs_blinded_c0 String 32 Bytes encoded in Crockford base32 Hex

cs_blinded_c1 String 32 Bytes encoded in Crockford base32 Hex

Table 4.9.: Withdraw ”coin_ev” field (Clause Blind Schnorr Signatures)

The exchange will then process the withdraw request and return one of these HTTP sta-
tus codes:

I 200 (HTTP_OK): Request Successful

I 400 (BAD_REQUEST): Invalid input parameters (can also happen if denomination
cipher doesn’t match with cipher in ”coin_ev”)

I 403 (FORBIDDEN): Signature contained in ”reserve_sig” invalid

I 404 (NOT_FOUND): Denomination unknown

I 410 (GONE): Denomination revoked/expired

I 412 (PRECONDITION_FAILED): Denomination not yet valid

When the request was successful, the exchange returns the RSA signature as JSON (de-
scribed in table 4.10).

Field Type Value

cipher Integer Denomination cipher: 1 stands for RSA

blinded_rsa_signature String RSA signature

Table 4.10.: Withdraw response (RSA)

Table 4.11 describes the response for Clause Blind Schnorr Signatures.
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Field Type Value

cipher Integer Denomination cipher: 2 stands for Clause Blind Schnorr Signatures

b Integer Clause Blind Schnorr Signatures signature session identifier (either 0 or 1)

s String signature scalar (32 Bytes encoded in Crockford base32 Hex)

Table 4.11.: Withdraw response (Clause Blind Schnorr Signatures)

4.8.2. Persistence

Persistence for withdrawing is implemented in the function postgres_do_withdraw in
src/exchangedb/plugin_exchangedb_postgres.c For Clause Blind Schnorr Signatures,
persisting the blinded signature must be implemented.

4.9. Deposit Protocol

For the deposit protocol (described in section 2.3.2) only the handling and verification of
Clause Blind Schnorr Signatures signatures has to be added.

4.9.1. Public APIs and Data Structures

Deposit is an existing endpoint available under POST /coins/[coin public key]/deposit
where ”coin public key” is encoded as Crockford base32. Additional parameters are passed
as JSON (as described in table 4.12).

POST /coins/[coin public key]/deposit
Relevant field for the Clause Blind Schnorr Signatures implementation is the field ”ub_sig”

containing the unblinded denomination signature of the coin. For RSA, the (nested) JSON
is described in table 4.13.
Table 4.14 describes the values in ”ub_sig” required for Clause Blind Schnorr Signatures.

4.9.2. Persistence

Persistence is handled in the functions postgres_insert_deposit and
postgres_have_deposit located in src/exchangedb/plugin_exchangedb_postgres.
c. However, these functions are not containing Clause Blind Schnorr Signatures-specific
persistence.
What needs to be adjusted however, is the function postgres_ensure_coin_known called
by the function TEH_make_coin_known (located in src/exchange/taler-exchange-httpd_
db.c).
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Field Value

merchant_payto_uri Account that is credited

wire_salt Salt used by the merchant

contribution Amount to use for payment (for one specific coin)

denom_pub_hash Denomination public key hash

ub_sig (unblinded) denomination signature of coin

merchant_pub Merchant public key

h_contract_terms Contract terms hash

coin_sig Deposit permission signature

timestamp Timestamp of generation

refund_deadline (optional) Refund deadline

wire_transfer_deadline (optional) Wire transfer deadline

Table 4.12.: Spend request

Field Type Value

cipher Integer Denomination cipher: 1 stands for RSA

rsa_signature String Unblinded RSA signature

Table 4.13.: ub_sig (RSA)

Field Type Value

cipher Integer Denomination cipher: 2 stands for Clause Blind Schnorr Signatures

cs_signature_r String Curve point R′ (32 Bytes encoded in Crockford base32 Hex)

cs_signature_s String Signature scalar (32 Bytes encoded in Crockford base32 Hex)

Table 4.14.: ub_sig (Clause Blind Schnorr Signatures)

72



5. Implementation

This chapter gives an overview on the implementation challenges and discusses special
parts in the implementation.

5.1. Signature Scheme Operations

The signature scheme operations are implemented in the GNUnet core repository [Repl]
(and have been merged into the master branch). This would allow other GNUnet projects
to use our implementation of the Clause Blind Schnorr Signature Scheme.
The implementation is done in multiple locations:

I src/include/gnunet_crypto_lib.h: This header file is includedwhenusingGNUnet’s
cryptography implementation.

I src/util/crypto_cs.c: The functions specified in gnunet_crypto_lib.h will be
implemented here.

I src/util/test_crypto_cs.c: The test cases for the signature scheme will be im-
plemented here.

I src/util/perf_crypto_cs.c: This file houses the implementation of a small pro-
gram that will be used to compare the performance against the blind RSA Signature
Scheme.

The specification explaining the API can be found in section 4.4. There are two internal
functions that have to be explained further in this section.
The map_to_scalar_subgroup function clamps scalars, which is necessary for values

that are derived using a HKDF. It sets the three least significant bits to zero (making the
scalar a multiple of 8), sets the most significant bit to zero and the second-most significant
bit to one. This process is further described in [RFC7748] and [Mad20].� �

1 static void
2 map_to_scalar_subgroup (struct GNUNET_CRYPTO_Cs25519Scalar *scalar)
3 {
4 scalar->d[0] &= 248;
5 scalar->d[31] &= 127;
6 scalar->d[31] |= 64;
7 }� �

Listing 5.1: Function map_to_scalar_subgroup - Crypto API
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Another important function is the FDH (see 2.2.3) used to map the message to a scalar.
GNUnet provides a FDH function, which expects libgcrypt’s multi precision format. A con-
version function is provided by GNUnet, which requires the data to be in big endian format.
Since libsodium uses a little endian representation, the conversion process must include
endianness conversion. The complete FDH including the required conversions is imple-
mented in the function described in listing 5.2.� �

1 static void
2 cs_full_domain_hash (const struct GNUNET_CRYPTO_CsRPublic *r_dash,
3 const void *msg,
4 size_t msg_len,
5 const struct GNUNET_CRYPTO_CsPublicKey *pub,
6 struct GNUNET_CRYPTO_CsC *c)
7 {
8 ...� �

Listing 5.2: Function cs_full_domain_hash - Crypto API

Last but not least, the implementation has one notable performance improvement not
mentioned in the redesigned protocols. In various steps HKDF is used multiple times in a
row. For example to derive the four blinding secrets α0, α1, β0, β1. The derivation can be
done in one HKDF call with bigger output size, 128 bit in this case. The output then can
be split in four parts and then mapped to the ed25519 subgroup. This can be done secure,
because as explained in subsection 2.2.2 a HKDF output is truly random.

5.2. Taler Cryptographic Utilities

�
Implementation is done in Taler’s exchange. From here on the implementation
can be found in the exchange git repository [Repd].

The cryptographic utilities of Taler can be found in src/util.
The implementation is done in various locations:

I src/include/taler_crypto_lib.h: This header file is includedwhenusing Taler’s
cryptography implementation. The different data structures and functionality are
defined here.

I src/util/denom.c: Implement denominationutility functions for Clause Blind Schnorr
Signatures cases

I src/util/crypto.c: Adjust all utility functions to support Clause Blind Schnorr
Signatures. crypto.c contains many cryptographic utility functions, for example to
create planchets or blinding factors.

I src/util/test_crypto.c: Functionality tests for crypto.c and denom.c

I src/include/taler_signatures.h: In this header file message formats and sig-
nature constants are defined (not modified)
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I src/util/secmod_signatures.c: Utility functions for Taler security module sig-
natures

The security module taler-secmod-cs is implemented here:

I src/util/taler-exchange-secmod-cs.c: Standalone process to perform private
key Clause Blind Schnorr signature operations.

I src/util/taler-exchange-secmod-cs.h: Specification of IPC1 messages for the
CS secmod process

I src/util/taler-exchange-secmod-cs.conf: Configurationfile for the secmodpro-
cess

I src/util/secmod_common.c and src/util/secmod_common.h: Common functions
for the exchange’s security modules (not modified)

The corresponding crypto helper, that talks with the security module, and its tests &
benchmarks are implemented here:

I src/util/crypto_helper_cs.c: Utility functions to communicate with the secu-
rity module

I src/util/crypto_helper_common.c: and crypto_helper_common.h: Common func-
tions for the exchange security modules (not modified)

I src/util/test_helper_cs.c: Tests and benchmarks for the Clause Blind Schnorr
Signatures crypto helper

5.3. Denomination Key Management

For the implementation, the Clause Blind Schnorr Signatures security module had to be
connected to the key handling and the Clause Blind Schnorr Signatures denominations
had to be integrated:

I src/exchange/taler-exchange-httpd_keys.h and
src/exchange/taler-exchange-httpd_keys.c: Integrate Clause Blind Schnorr Sig-
natures secmod and denomination key management

I src/exchange-tools/taler-exchange-offline.c: Implement Clause Blind Schnorr
Signatures case for offline signing of denomination keys

I src/include/taler_exchange_service.h:
Add Clause Blind Schnorr Signatures secmod public key to struct
TALER_EXCHANGE_FutureKeys

1Inter Process Communication

75

src/exchange/taler-exchange-httpd_keys.h
src/exchange/taler-exchange-httpd_keys.c
src/exchange-tools/taler-exchange-offline.c
src/include/taler_exchange_service.h


5. Implementation

I src/json/json_helper.c: Implement CS case in function parse_denom_pub (used
in taler-exchange-offline.c)

I src/json/json_pack.c: Implement Clause Blind Schnorr Signatures case in func-
tion TALER_JSON_pack_denom_pub (used in taler-exchange-httpd_keys.c)

I src/pq/pq_query_helper.c: Implement Clause Blind Schnorr Signatures case in
function qconv_denom_pub

I src/pq/pq_result_helper.c: Implement Clause Blind Schnorr Signatures case in
function extract_denom_pub

In order for the tests to pass, the following changes had to be implemented:

I src/lib/exchange_api_management_get_keys.c: Add denom_secmod_cs_public_key
JSON parsing, implement Clause Blind Schnorr Signatures case
in function TALER_EXCHANGE_ManagementGetKeysHandle

I src/testing/.gitignore: Add paths where Clause Blind Schnorr Signatures keys
are stored (secmod-helper)

I src/testing/test_auditor_api.conf: Add section taler-exchange-secmod-cs

I src/testing/test_exchange_api_keys_cherry_picking.conf: Add section taler-
exchange-secmod-cs

I src/testing/testing_api_helpers_exchange.c: Add Clause Blind Schnorr Sig-
natures secmod start and stop logic

5.4. New Endpoint for R

The new endpoint is available in the exchange’s HTTP server under /csr. It parses and
checks the input, passes the request for derivation of the twoR’s down to the Clause Blind
Schnorr Signatures security module and returns them to the requestor. The implementa-
tion can be found in:

I src/exchange/taler-exchange-httpd.c: Definition for the new endpoint, calls
the function that handles /csr requests

I src/exchange/taler-exchange-httpd_responses.h and
src/exchange/taler-exchange-httpd_responses.c:
Added function TEH_RESPONSE_reply_invalid_denom_cipher_for_operation that indi-
cates a failure when the endpoint is called for a non-Clause Blind Schnorr Signatures
denomination

I src/exchange/taler-exchange-httpd_csr.h and
src/exchange/taler-exchange-httpd_csr.c:
Implementation of the request handler for the new endpoint
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I src/exchange/taler-exchange-httpd_keys.h and
src/exchange/taler-exchange-httpd_keys.c:
Additional function TEH_keys_denomination_cs_r_pub that passes down the request
to derive the R to the taler-exchange-secmod-cs helper

The tests that check the functionality of the procotols are defined in src/testing/ and
use code that calls the API (located in src/lib/). Since the new endpoint is used dur-
ing withdrawing coins, testing for the /csr endpoint is integrated in these protocol tests.
Therefore, a call to the endpoint was implemented and later integrated into the calls to the
withdraw-API. Code for calling the endpoint is located in these files:

I src/include/taler_exchange_service.h:
Header describing functions and data structures used in withdraw and refresh test-
ing:

– struct TALER_EXCHANGE_CsRHandle: Handle containing request information

– struct TALER_EXCHANGE_CsRResponse: Response details

– function TALER_EXCHANGE_CsRCallback: Callback function to deliver the re-
sults (used in withdraw and refresh)

– function TALER_EXCHANGE_csr: Used to call endpoint

– function TALER_EXCHANGE_csr_cancel: Used to free dynamically allocated re-
sources

I src/lib/exchange_api_csr.c: Implementation of /csr request

5.5. Withdraw Protocol

Since this is an existing endpoint, it was adjusted to support Clause Blind Schnorr Signa-
tures. Mainly, the in- and output-handling had to be adjusted as described in section 4.8.1,
additional cipher checks for the denomination were added and the Clause Blind Schnorr
Signatures for persisting the request in the database was implemented.

An interesting part of the implementation is the check whether a nonce was already used
for this denomination or not (step: s← GetWithdraw(nw, Dp)). This step ensures that the
same signature will always be returned for a certain nonce. Using the same nonce for the
same denomination twice without this check would lead to the same random value r. This
is due to derivation of r := HKDF(256, nw||ds, ”r”). An attacker could then immediately re-
cover the secret key by the following equation: (h′−h)∗x mod q = s−s′ mod q [Tib17].
There are popular examples of this vulnerability in Sony Playstation 3’s or Bitcoins ECDSA
implementation [OBE18] [Wan+19]. More details on how such a vulnerability can be ex-
ploited can be found in one of the author’s blog posts [Dem21].
The designed Taler protocols using Clause Blind Schnorr Signatures are preventing this
attack by checking the nonce and return the previously generated signature. Additionally
the denomination’s public key is included in this check to prevent another issue explained
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in section 5.7.
The check is implemented by persisting a hash value over nw and Dp. On every with-
drawal check_request_idempotent() is called, which checks whether the persisted hash
matches with the current nw, Dp pair.

I src/exchange/taler-exchange-httpd_withdraw.c: Implementation of Clause Blind
Schnorr Signatures case for withdraw endpoint

I src/exchange/taler-exchange-httpd_keys.c: Implement Clause Blind Schnorr
Signatures case in function
TEH_keys_denomination_sign (passes the signature creation down to the crypto helpers)

I src/include/taler_json_lib.h and src/json/json_helper.c:
Add function TALER_JSON_spec_blinded_planchet

I src/json/json_pack.c:
Implement Clause Blind Schnorr Signatures case in function
TALER_JSON_pack_blinded_denom_sig

I src/pq/pq_query_helper.c: implement Clause Blind Schnorr Signatures case in
functions qconv_denom_sig and qconv_blinded_denom_sig

I src/pq/pq_result_helper.c: Implement Clause Blind Schnorr Signatures case in
function extract_blinded_denom_sig

For testing, the Clause Blind Schnorr Signatures-related data structures and procedures
as well as the request to the additional endpoint /csr (before performing the actual with-
drawal) were integrated:

I src/testing/test_exchange_api.c: Add additional tests for Clause Blind Schnorr
Signatures withdraw

I src/include/taler_testing_lib.h: Specification for functions
TALER_TESTING_cmd_withdraw_cs_amount and
TALER_TESTING_cmd_withdraw_cs_amount_reuse_key, add denomination cipher pa-
rameter to function TALER_TESTING_find_pk

I src/testing/testing_api_cmd_withdraw.c: add functions
TALER_TESTING_cmd_withdraw_cs_amount and
TALER_TESTING_cmd_withdraw_cs_amount_reuse_key, implement Clause Blind Schnorr
Signatures-specific logic for withdraw

I src/testing/testing_api_helpers_exchange.c: add cipher parameter to func-
tion TALER_TESTING_find_pk

I src/lib/exchange_api_withdraw.c: Implement Clause Blind Schnorr Signatures-
specific withdraw logic, integrate /csr request
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I src/lib/exchange_api_withdraw2.c: implement Clause Blind Schnorr Signatures
case

I src/include/taler_json_lib.h and src/json/json_pack.c:
Add function TALER_JSON_pack_blinded_planchet

I src/json/json_helper.c implement Clause Blind Schnorr Signatures case in func-
tion parse_blinded_denom_sig

5.6. Deposit Protocol

For deposit, only few changes were necessary because some of the required functional-
ity has already been added for the previously implemented protocols, and only the coin
signature verification is Clause Blind Schnorr Signatures-specific in this protocol.

I /src/exchange/taler-exchange-httpd_deposit.c: Add check whether denomi-
nation cipher and denomination signature cipher are equal

I /src/json/json_helper.c: Implement Clause Blind Schnorr Signatures case in
function parse_denom_sig

I /src/pq/pq_result_helper.c: Implement Clause Blind Schnorr Signatures case
in function extract_denom_sig

Tests for deposit are implemented here:

I /src/testing/test_exchange_api.c: Add tests (see ”struct TALER_TESTING_Com-
mand spend_cs[]”) that spend Clause Blind Schnorr Signatures coins withdrawn in
tests added for withdrawal

I /src/json/json_pack.c: Implement Clause Blind Schnorr Signatures case in func-
tion TALER_JSON_pack_denom_sig

5.7. Fixing a Minor Security Issue in Taler’s RSA Blind Signature
Protocols

While implementing the nonce check in the Clause Blind Schnorr Signatures protocol (see
section 5.5), a minor security issue in Taler’s current RSA Blind Signature implementation
was detected and fixed. The issue was only in the implementation of the current RSA Blind
Signature protocols, the fix for this scenario was already implemented in Clause Blind
Schnorr Signatures since the beginning.
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5.7.1. Security Issue

The redesigned Clause Blind Schnorr Signatures protocols already include the denomina-
tion key in the nonce check, which fixes this issue (see 3.2.1). In the case of RSA Blind
Signatures, the current protocol includes an idempotence check by persisting the hash
value of the blinded coinm′. On a withdrawal/refresh the idempotence check compares if
the hash value ofm′ was seen in the past and returns the ’old’ signature on a match. This
could lead to the following scenario:

1. A broken wallet withdraws a coin with denominationDp(1) .

2. The wallet sends a request to withdraw the same coin for denominationDp(2) .

3. The exchange returns the signature for the denomination Dp(1) due to the idempo-
tence check.

4. Since the exchange returned an invalid signature, the customer can file a complaint
at the auditor.

5. The auditor then has to investigate why the exchange returned invalid signatures.

6. The auditor can disprove the complaint by querying the persisted hash used for the
idempotence check. With the associated denomination public key that is also per-
sisted, the auditor can successfully verify the signature and thus prove that the ex-
change operated honestly.

Including the denomination public key into the persisted hash for the idempotence
check solves this issue. If a broken wallet now sends the same coin for more than one
denomination, the exchange returns valid signatures in both cases.
While this is still an issue, this case is already handled nicely in Taler since this situa-
tion could also occur if a broken value tries to withdraw the same coin with two different
blinding factors.

5.7.2. Impact

The impact of this security vulnerability is considered as very low. An auditor investigat-
ing such an issue can simply retrace what happened by checking the persisted hash and
associated denomination. The impact of the issue is, that an auditor needs to investigate
an issue, which can be prevented inside the protocol.
In the previous section the client was considered a broken wallet. While this could be done
on purpose by malicious a customer, there is no real motivation for abusing this issue due
the easy detection of an auditor.

5.7.3. Fix

Listing 5.3 shows the code of calculating the hash for the idempotency check in the RSA
case before it was fixed. By trying to implement the Clause Blind Schnorr Signatures case,
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the question came up why the RSA case has not included the denomination key into the
check. After discussing this issue with Christian Grothoff, the conclusion was to include
the denomination public key to prevent the discussed issue.� �

1 enum GNUNET_GenericReturnValue
2 TALER_coin_ev_hash (const struct TALER_BlindedPlanchet *blinded_planchet,
3 struct TALER_BlindedCoinHash *bch)
4 {
5 switch (blinded_planchet->cipher)
6 {
7 case TALER_DENOMINATION_RSA:
8 GNUNET_CRYPTO_hash (
9 blinded_planchet->details.rsa_blinded_planchet.blinded_msg,
10 blinded_planchet->details.rsa_blinded_planchet.blinded_msg_size,
11 &bch->hash);
12 return GNUNET_OK;
13 case TALER_DENOMINATION_CS:
14 ...� �

Listing 5.3: Idempotency check on RSA

The issue is fixed by adding a hash of the current denomination key into the calculation
of the hash used in the idempotence check. The applied fix can be seen in listing 5.4.� �

1 enum GNUNET_GenericReturnValue
2 TALER_coin_ev_hash (const struct TALER_BlindedPlanchet *blinded_planchet,
3 const struct TALER_DenominationHash *denom_hash,
4 struct TALER_BlindedCoinHash *bch)
5 {
6 switch (blinded_planchet->cipher)
7 {
8 case TALER_DENOMINATION_RSA:
9 {
10 struct GNUNET_HashContext *hash_context;
11 hash_context = GNUNET_CRYPTO_hash_context_start ();
12
13 GNUNET_CRYPTO_hash_context_read (hash_context,
14 &denom_hash->hash,
15 sizeof(denom_hash->hash));
16 GNUNET_CRYPTO_hash_context_read (hash_context,
17 blinded_planchet->details.
18 rsa_blinded_planchet.blinded_msg,
19 blinded_planchet->details.
20 rsa_blinded_planchet.blinded_msg_size);
21 GNUNET_CRYPTO_hash_context_finish (hash_context,
22 &bch->hash);
23 return GNUNET_OK;
24 }
25 case TALER_DENOMINATION_CS:
26 {
27 struct GNUNET_HashContext *hash_context;
28 hash_context = GNUNET_CRYPTO_hash_context_start ();
29
30 GNUNET_CRYPTO_hash_context_read (hash_context,
31 &denom_hash->hash,
32 sizeof(denom_hash->hash));
33 GNUNET_CRYPTO_hash_context_read (hash_context,
34 &blinded_planchet->details.
35 cs_blinded_planchet.nonce,
36 sizeof (blinded_planchet->details.
37 cs_blinded_planchet.nonce));
38 GNUNET_CRYPTO_hash_context_finish (hash_context,
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39 &bch->hash);
40 return GNUNET_OK;
41 }
42 default:
43 GNUNET_break (0);
44 return GNUNET_SYSERR;
45 }
46 }� �

Listing 5.4: Fixed idempotency check
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This chapter analyses the Clause Blind Schnorr Signature Scheme implementation and
compares it to the existing implementation with RSA Blind Signatures. The comparison
will include the schemes itself, performance comparisons and a discussion on the security
assumptions. For the performance comparison CPU usage, latency, bandwidth and storage
space are compared.

6.1. Cipher Agility

One of the benefits of having another blind signature scheme in Taler is cipher agility.
Cipher agility means that one scheme can substitute another, for example if one scheme
gets compromised in the future.
Cipher agility is consideredharmful in certain situations. TLS 1.2 [RD08] and IPSEC/IKEv2

[FK11] are good examples on how dangerous cipher agility inside protocols can be. There
are many ways these protocols can be set up insecure.

Taler’s protocols are built around blind signature schemes. Therefore it is crucial to have
an additional secure blind signature scheme that works with all Taler protocols. As de-
scribed in section 2.2.4, blind signature schemes can vary and may be complex to substi-
tute. The Clause Blind Schnorr Signatures implementation provides such an alternative
and thus cipher agility.

6.2. Scheme Comparison

Both schemes are explained in the preliminaries chapter (RSA Blind Signatures in section
2.5 and Clause Blind Schnorr Signatures in 2.7).
There are multiple differences worth mentioning. The first difference is that Schnorr sig-
natures are inherently randomized. This is also where the additional step in Schnorr sig-
natures comes from. A random number is chosen by the signer for every signature.
In Clause Blind Schnorr Signatures two blinding secrets are used instead of one in RSA
Blind Signatures. On top of that, Clause Blind Schnorr Signatures needs to do most com-
putations for signature creation twice, due to the ROS problem (see 2.2.4).

Abort-idempotency is a very important property for Taler. Ensuring abort-idempotency
with the Clause Blind Schnorr Signatures scheme is harder than it was with RSA, due to
the many random elements in the scheme (r0, r1, α0, α1, β0, β1, b). The reason that these
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values are chosen randomly is the need for unpredictability.
In the protocols (see chapter 3) HKDF is extensively used to derive these values instead
of randomly generating them. That way, the values are still unpredictable (due to HKDF
properties), but now the protocols also ensure abort-idempotency. In comparison to the
RSA Blind Signature scheme, this is a clever and elegant solution, but the protocol com-
plexity is increased.

One could now think that RSA would be much simpler to implement, since the scheme
looks easier and more accessible for many. This can go horribly wrong and many devel-
opers still underestimate implementing RSA. There are a lot of attacks on RSA, some ex-
amples are listed on the famous tool RsaCtfTool [Gan22]. Ben Perez made a popular talk
and blog post, about why one should stop using RSA and should preferably use libsodium
and ECC1 [Per22]. Using RSA Blind Signatures in Taler is still a reasonable and fine choice.
Taler uses libgcrypt, a well-known and tested library.
To conclude, the Clause Blind Schnorr Signatures protocols might be more complex to un-
derstand than the RSA Blind Signature protocols. One has to keep inmind that implement-
ing RSA correctly is hard.
Another difference worth mentioning is, that the Clause Blind Schnorr Signatures scheme
does not need scheme specific configurations, whereas RSA needs a key size specified.
This is because the implemented Clause Blind Schnorr Signatures version only supports
Curve25519.

Furthermore, both schemes provide perfect blindness, see paragraph 2.2.4 for RSA and
paragraph 2.2.4 for Clause Blind Schnorr Signatures.

6.3. Performance Comparison

This section compares how the two schemes perform regarding CPU usage, latency, band-
width and space. Clause Schnorr has fixed key sizes with 256 bits (32 bytes), which we
compare against different RSA key sizes (1024, 2048, 3072 and 4096 bits). In terms of
security, Clause Blind Schnorr Signatures 256 bit keys could be compared to 3072 bit RSA
keys (see https://www.keylength.com/ for more information).

6.3.1. CPU Usage

Various benchmarks were made on different CPU architectures. This section discusses
the main results, detailed information about the performance comparison can be found in
appendix B. We thank the Taler team for providingmeasurements from additional systems
and architectures.
Table 6.1 shows how Clause Blind Schnorr Signatures compares to RSA 3072. RSA 3072

was chosen for comparison, since they both provide a comparable level of security. Both
provide about 128 bits of security, which means that roughly 2128 attempts in average are
1Elliptic Curve Cryptography
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needed for a successful brute-force attack.
The table shows that Clause Blind Schnorr Signatures has better performance compared
to RSA 3072 in all operations. The biggest difference can be seen in the key generation. In
RSA, two random primes are needed, whereas DLP algorithms like Clause Blind Schnorr
Signatures only need to generate a random value. Since key generation is done rarely
compared to the other operations, the time needed for key generation does not matter that
much.
Furthermore, the blinding in Clause Blind Schnorr Signatures is still faster than blinding
in RSA, although in the Clause Blind Schnorr Signatures case the calculation is done twice.
Also the derivation of r0, r1, the generation of R0, R1 and the derivation of α0, β0, α1, β1
is included in the measurement for the blinding operation of Clause Blind Schnorr Signa-
tures. Signing and blinding operations aremuch faster in Clause Blind Schnorr Signatures,
also Clause Blind Schnorr Signatures signature verification is faster than RSA 3072.

Setup

CPU: 8-core AMD Ryzen 7 PRO 5850U
OS: Ubuntu 21.10 Linux 5.13.0-25-generic #26-Ubuntu SMP Fri Jan 7 15:48:31 UTC
2022 x86_64 x86_64 x86_64 GNU/Linux
libsodium version: 1.0.18-1build1
libgcrypt version: 1.8.7-5ubuntu2

Benchmarks with other hardware setups can be found in appendix B.

Signature Scheme Operation Speed

CS 10x key generation 0.204 ms

RSA 3072 bit 10x key generation 2684 ms

CS 10x derive R0, R1 & blinding 3.870 ms

RSA 3072 bit 10x blinding 5 ms

CS 10x signing 0.077 ms

RSA 3072 bit 10x signing 86 ms

CS 10x unblinding 0.001 ms

RSA 3072 bit 10x unblinding 24 ms

CS 10x verifying 1.358 ms

RSA 3072 bit 10x verifying 3.075 ms

Table 6.1.: Comparison on CS vs. RSA 3072

Table 6.2 shows a comparison between Clause Blind Schnorr Signatures and RSA 1024
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bit. RSA 1024 is in some situations faster than the Clause Blind Schnorr Signatures im-
plementation. Note that 1024 bit keys are not recommended for many use cases, but the
highest currently knownRSA factorization done is 829 bits [Wik21d]. The following section
6.5 explains the risk running RSA 1024 or Clause Blind Schnorr Signatures denominations
further.
The blind and unblind operations are running in a wallet implementation, therefore the
comparison with RSA 1024 is very interesting for devices with less CPU power. Compari-
son of such hardware can be found in appendix B, these comparison results come to the
same conlcusion.
Although RSA 1024 bit is much faster in the blinding operation, Clause Blind Schnorr Sig-
natures still perform better when calculating the blinding and unblinding operations to-
gether. Clause Blind Schnorr Signatures unblinding computes only an addition of two
scalars s+ α mod p, while RSA computes s ∗ r−1. To conclude, Clause Blind Schnorr Sig-
natures are faster than RSA 1024 bit and provide a better level of security. This can be
especially useful for wallets running on devices with less CPU power. The verification on
RSA 1024 is faster than Clause Blind Schnorr Signatures. Therefore, it has to be further
investigated which algorithmwould overall perform better for the exchange or merchants.
While RSA 1024 bit can compete in certain operations, Clause Blind Schnorr Signatures
provide a better level of security and are still faster in most operations.

Signature Scheme Operation Speed

CS 10x key generation 0.204 ms

RSA 1024 bit 10x key generation 126 ms

CS 10x derive R0, R1 & blinding 3.870 ms

RSA 1024 bit 10x blinding 1.282 ms

CS 10x signing 0.077 ms

RSA 1024 bit 10x signing 7 ms

CS 10x unblinding 0.001 ms

RSA 1024 bit 10x unblinding 2.991 ms

CS 10x verifying 1.358 ms

RSA 1024 bit 10x verifying 0.876 ms

Table 6.2.: Comparison on CS vs RSA 1024
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6.3.2. Disk Space

�
These are theoretical calculations, implementations may choose to persist ad-
ditional values.

Clause Blind Schnorr Signatures save disk space due to themuch smaller key sizes. Even
more disk space is saved by deriving values with the HKDF, these values do not have to be
stored.
Table 6.3 shows the disk space comparison of signatures, the private keys alone need even
less space with 256 bits per key.
The wallet saves a lot of disk space by deriving most of the values. In the Clause Blind
Schnorr Signatures case a wallet must at least persist the private key cs, R0, R1, s

′, Dp,
each being 256 bits (32 bytes). A wallet needs to persist 150 bytes per coin in total. In the
RSA Blind Signature case the wallet persists cs, b, σc,Dp.
Note: for refreshed coins an additional 32 byte value is persisted as seed.
cs is still a 32 byte value in the RSA case, the other values depend on the RSA key size. (32
byte + 3 * rsa_keysize). The disk space comparison for a wallet can be found in 6.4.

Signature Scheme Disk Space Factor Disk Space 1M signatures

CS 512 bits 1x 64 MB

RSA 1024 bit 1024 bits 2x 128 MB

RSA 2048 bit 2048 bits 4x 256 MB

RSA 3072 bit 3072 bits 6x 384 MB

RSA 4096 bit 4096 bits 8x 512 MB

Table 6.3.: Comparison disk space signatures

Signature Scheme Disk Space Factor Disk Space 1M coins

CS 256 bits 150 bytes 1x 150 MB

RSA 1024 bit 416 bytes 2.7x 416 MB

RSA 2048 bit 800 bytes 5.3x 800 MB

RSA 3072 bit 1184 bytes 7.9x 1184 MB

RSA 4096 bit 1568 bytes 10.4x 1568 MB

Table 6.4.: Comparison disk space wallet
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6.3.3. Bandwidth

�
These are theoretical calculations, implementations may choose to persist ad-
ditional values.

The reasons that Clause Blind Schnorr Signatures use less bandwidth is mostly because
the signature/key sizes are much smaller. The bandwith improvements for the /keys API
is the same as specified in the table with disk space comparison 6.3. For Clause Blind
Schnorr Signatures many calculations are performed twice, therefore also two values are
submitted. Table 6.5 compares the bandwidth used in a withdrawal. The 32 byte values
2 ∗ nw, 2 ∗ Dp, R0, R1, s,Wp, c0, c1, σW as well as an integer b are transmitted for Clause
Blind Schnorr Signatures.
For RSA, the valuesDp,m

′, σ′
c have the same size as the key size. Additionally, the 32 byte

valuesWp, σW are transmitted.

In the refresh protocol the only difference is an additional hash (hC0 , hC1 instead of only
hC) sent in the commit phase. Depending on the hash size another 32 byte (or 64 byte)
value is transmitted.

Signature Scheme Bandwith used Factor 1M coins

CS 256 bits 356 bytes 1x 324 MB

RSA 1024 bit 448 bytes 1.3x 448 MB

RSA 2048 bit 832 bytes 2.5x 832 MB

RSA 3072 bit 1216 bytes 3.75x 1216 MB

RSA 4096 bit 1600 bytes 4.9x 1600 MB

Table 6.5.: Bandwith comparison withdrawal

6.3.4. Latency

This section the notion of Round-Trip Time (see [pre22]) is used. There are many factors
that influence the measurement of a Round-Trip Time. Following factors can bring huge
changes in the value of RTT2s.

I Distance

I Transmission medium

I Network hops

I Traffic levels
2Round-Trip Time
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I Server response time

All of these factors will vary in reality and are independent of the scheme.
The important comparison here is the number of RT3s as in table 6.6.

Signature Scheme Number of RTs

RSA Blind Signatures 1

Clause Blind Schnorr Signatures 2

Table 6.6.: Comparison of Round-Trips

While creating RSA Blind Signatures have one RT, Clause Blind Schnorr Signatures need
an additional RT for requesting the public R0, R1. This means that the time spend for
withdrawing is almost doubled (the R request doesn’t have any persistence and therefore
requires less time) in comparison to RSA.
A coin should not be spent immediately after withdrawal or refresh. Otherwise, an ad-

versary could deanonymize a customer by correlating the timestamps. The additional RT
is a drawback of Clause Blind Schnorr Signatures compared to RSA, but negligible due to
the fact that a coin must not be spent immediately.

6.4. Security Assumptions

This section discusses the differences regarding the security assumptions of the schemes.
This section should not explain nor analyze the security assumptions, instead the section
focuses on explaining what these assumptions mean and what should be kept in mind
about them. Read section 2.2.3 and it’s references for more information on the assump-
tions.
RSA’s security assumptions are well known since quite a long time and a lot of research

is done. Despite being a lot of attacks [Gan22] [Per22], RSA is still considered a secure
scheme after decades.
For Schnorr Signatures the Discrete Logarithm Problem (see subsubsection 2.2.5) needs to
be hard. Also the DLP is well-known and is being researched since decades.
However, with Blind Schorr Signatures an additional assumption needs to hold; the ROS
problem. Compared to the other assumptions, ROS is relatively new and still a recent re-
search topic. A recent paper from 2020 on the (in)security of ROS [Ben+20] broke many
schemes relying on ROS being hard, including Schnorr Blind signatures. The paper on
whichwe rely on (updated in 2021)with the Clause Blind Schnorr Signature Scheme [FPS19]
is considered secure at the time of writing.

3Round-Trip
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6.5. Risk

As introduced in section 6.4, Clause Blind Schnorr Signatures rely on an additional as-
sumption currently being researched. Compared to other schemes, the chosen Clause
Blind Schnorr Signatures are very new (published in 2019, updated in 2021). While ev-
ery scheme could potentially be broken, older ones already went through a lot of research
and their assumptions are well-known. Therefore, the risk that a vulnerability in Clause
Blind Schnorr Signatures will be discovered is probably higher than a newly discovered
vulnerability breaking RSA.
Unpredictability of r is a key aspect of the signature creation process of Clause Blind

Schnorr Signatures. The redesigned Taler protocols solve this by persisting the nonce and
denomination key (described in section 5.5) and checking for reuse of this combination be-
fore signature creation. If this process is malfunctioning (broken implementation, faulty
database) or can be circumvented in any way, recovery of a denomination private key is
possible.
An exchange operator can still consider using Clause Blind Schnorr Signatures as de-

nomination scheme, as there are multiple benefits (see section 6.3). The financial loss in
the worst case can be calculated and capped by the validity of a denomination key. If a
vulnerability in the Clause Blind Schnorr Signatures would be detected, an exchange op-
erator could revoke the corresponding denomination keys and change the scheme to RSA
Blind Signatures. The wallets can then follow the refund protocol to get the money back.

6.6. Comparison Conclusion

A detailed comparison of the two blind signature schemes was made. This last section
interprets the results and concludes the comparison.
Clause Blind Schnorr Signatures on Curve25519 provide the same security level as RSA

Blind Signatures with 3072 bit key sizes. The implementation of Clause Blind Schnorr
Signatures is the clear winner in all performance comparisons with RSA 3072 bits.
1024 bit RSA is faster than the Clause Blind Schnorr Signatures implementation in cer-

tain operations. The Clause Blind Schnorr Signatures implementation still offers better
performance for wallets with less CPU power and provides a much higher level of security
(comparable to RSA 3072). As further comparisons show, RSA scales very bad the larger
the keys get and Clause Blind Schnorr Signatures performs much better overall.
As discussed in the risk section 6.5, Clause Blind Schnorr Signatures have an additional

security assumption, which is still a recent research topic. Clause Blind Schnorr Signatures
provide various benefits and the risk can be calculated and capped. An exchange operator
who is aware of the discussed risk can use Clause Blind Schnorr Signatures safely. Clause
Blind Schnorr Signatures are best suited for denominations with low value, where many
coins are being withdrawn/refreshed.
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7. Conclusion

This section provides a summary of this work, presents the results and gives an outlook
on future work.

7.1. Summary

In the beginning of the project good knowledge on the current state in research about Blind
Schnorr signatures was needed. Therefore, various papers were read and then the paper
”Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic Group Model”
[FPS19] was chosen as basis for the redesign of the Taler protocols.
The next step was to analyze the current Taler protocols and understand the required prop-
erties including abort-idempotency.
With the gathered knowledge (see chapter 2) the Taler protocols were redesigned to sup-
port Clause Blind Schnorr Signatures (see chapter 3). These redesigned protocols were
then further specified (chapter 4) and then implemented (chapter 5). The implementa-
tion includes the main protocols, key management, cryptographic utilities in Taler and
the Clause Blind Schnorr Signatures cryptographic routines.
The Clause Blind Schnorr Signatures scheme was analyzed and compared in detail to the
RSA Blind Signature scheme (see 6).

7.2. Results

The thesis provides several results to add support for Schnorr’s blind signature in Taler,
including:

I Redesigned Taler protocols to support Clause Blind Schnorr Signatures

I Implementation of cryptographic routines

I Implementation of Taler protocols in Exchange

– Key Management and security module

– Cryptographic utilities

– Withdraw protocol

– Deposit protocol

I Comparison and Analysis

91



7. Conclusion

– Performance (speed, space, latency & bandwith)

– Security

– Scheme Comparison

I Fixing a minor security issue in Taler’s current protocols

The code is tested, and those tests are integrated in the existing testing framework. Bench-
marks are added for the cryptographic routines and the security module.

7.3. Future Work

Like in any other project, there is always more that could be done. This section provides
an outlook on what can be done in future work.

I Implement wallet

I Implementing remaining Clause Blind Schnorr Signatures protocols (refresh, tipping
protocol, refund etc.)

I Implementing merchant

I Security audit of CS implementation

I Find a solution for withdraw loophole

I Evaluating & implementing Clause Blind Schnorr Signatures on other curves

There are some remaining protocols to implement, which were out of scope for this the-
sis. To run Clause Blind Schnorr Signatures in production, these protocols have to be im-
plemented too. Further, the merchant needs to support Clause Blind Schnorr Signatures
too. The merchant implementation can be done fast, as the merchant only verifies denom-
ination signatures in most cases.
Currently, the exchange runs both security modules, the Clause Blind Schnorr Signatures
and the RSA security modules. To reduce unnecessary overhead, this should be changed
so that only one security has to be running. To run Clause Blind Schnorr Signatures in
production a security audit from an external company is recommended (as done for other
parts in the exchange, see [Gmb20]). A security audit should always be made when imple-
menting big changes like these.
Asmentioned in the scope section, the optional goal to find and implement a good solution
for the withdraw loophole was dropped. This was due to the scope shift and because the
analysis of the problem showed that finding a good solution needs more research and is a
whole project in itself (see 1.3 for more information).
Furthermore, Clause Blind Schnorr Signatures could be implemented on other curves. For
example Curve448 [Ham15] could be used, as it provides 224 bits of security, wheras
Curve25519 [Ber06] provides about 128 bits of security. Curve secp256k1 could further im-
prove Clause Blind Schnorr Signatures performance. While providing support for Curve448
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should not be problematic, a potential implementation for secp256k1 needs further anal-
ysis (see [BL21] and [Pie20] for more information).

7.4. Personal Conclusion

This thesis includes understanding, analyzing, integrating and implementing a recent aca-
demic paper [FPS19] containing a modern cryptographic scheme. Furthermore, the im-
plementation is done in Taler, an intuitive and modern solution for a social responsible
payment systemwith high ethical standards. Although there was a lot of work, we enjoyed
working on such a modern and very interesting topic. Especially the first successful signa-
ture verification and the signature scheme performance benchmarks motivated us to push
the implementation and integration into Taler forward.
We are happy to provide an implementation of a modern scheme and making it available
as free software.
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A. Installation

These installation instructions are meant to run the code developed within this thesis for
development- and review-purposes. For a comprehensive installation instruction follow
the Taler documentation [SAc].

� These instructions are used and tested on Ubuntu 21.10.

A.1. Dependencies and Setup

The following dependencies need to be installed for GNUnet and Taler Exchange:

•••
1 student@ubuntu:~$ sudo apt update
2 student@ubuntu:~$ sudo apt install git curl build-essential gcc automake

make \ texinfo autoconf uncrustify libtool pkgconf gettext gnutls-bin \
libcurl4-gnutls-dev libgcrypt20-dev libidn2-dev libjansson-dev \
libnss3-dev sqlite pipenv libltdl-dev libsodium-dev libpq-dev \
autopoint libunistring-dev libextractor-dev libpng-dev \ libpulse-dev
libsqlite3-dev recutils python3-jinja2 sqlite yapf3 \ postgresql
libpq-dev wget libmicrohttpd-dev

3 student@ubuntu:~$ export LD\_LIBRARY\_PATH=/usr/local/lib

Install in a container

The installation can also be done in a docker or podman container with the
ubuntu:21.10 image:

•••
1 student@ubuntu:~$ podman run -it --name talertest ubuntu:21.10

A.2. Install GNUnet Core

GNUnet core is both a dependency of the Taler exchange and where we implemented the
Clause Blind Schnorr Signature Scheme.
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A. Installation

•••
1 student@ubuntu:~$ git clone https://git.gnunet.org/gnunet.git
2 student@ubuntu:~$ cd gnunet
3 student@ubuntu:~$ ./bootstrap
4 student@ubuntu:~$ ./configure --enable-benchmarks --prefix=/usr/local
5 student@ubuntu:~$ make
6 student@ubuntu:~$ make install
7 student@ubuntu:~$ make check # Run optionally to verify installation and run tests

To run benchmarks run:

•••
1 student@ubuntu:~$ ./src/util/perf_crypto_cs
2 student@ubuntu:~$ ./src/util/perf_crypto_rsa

A.3. Install Taler Exchange

�

Ensure that the current user has privileges in postgresql. One possible way to
do this is:
(where [user] has to be replaced with the name of the system user running the
tests)

•••
1 student@ubuntu:~$ service postgresql start
2 student@ubuntu:~$ sudo su
3 student@ubuntu:~$ su - postgres
4 student@ubuntu:~$ psql
5 student@ubuntu:~$ CREATE ROLE [user] LOGIN SUPERUSER;
6 student@ubuntu:~$ CREATE DATABASE [user] OWNER [user];
7 student@ubuntu:~$ exit

The Taler exchange can be installed as followed:

•••
1 student@ubuntu:~$ service postgresql start
2 student@ubuntu:~$ createdb talercheck
3 student@ubuntu:~$ git clone https://git.taler.net/exchange.git
4 student@ubuntu:~$ cd exchange
5 student@ubuntu:~$ ./bootstrap
6 student@ubuntu:~$ ./configure --with-gnunet=/usr/local --prefix=/usr/local
7 student@ubuntu:~$ ./make
8 student@ubuntu:~$ ./make install
9 student@ubuntu:~$ ./make check # Run optionally to verify installation and run tests

To execute the security module benchmarks run:
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A. Installation

•••
1 student@ubuntu:~$ cd src/util
2 student@ubuntu:~$ ./test_helper_cs
3 student@ubuntu:~$ ./test_helper_rsa
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B. Performance Measurements

B.1. AMD Ryzen 7 PRO 5850U (Notebook)

Detailed comparison of each operation can be found in table B.1.

Setup

CPU: 8-core AMD Ryzen 7 PRO 5850U
Architecture: amd64
OS: Ubuntu 21.10 Linux 5.13.0-25-generic #26-Ubuntu SMP Fri Jan 7 15:48:31 UTC
2022 x86_64 x86_64 x86_64 GNU/Linux
libsodium:amd64 version: 1.0.18-1build1
libgcrypt:amd64 version: 1.8.7-5ubuntu2

B.2. Intel(R) Core(TM) i7-8565U

Detailed comparison of each operation can be found in table B.2.

Setup

CPU: 8-core Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz
Architecture: amd64
OS: Ubuntu 21.10 Linux 5.13.0-25-generic #26-Ubuntu SMP Fri Jan 7 15:48:31 UTC
2022 x86_64 x86_64 x86_64 GNU/Linux
libsodium:amd64 version: 1.0.18-1build1
libgcrypt:amd64 version: 1.8.7-5ubuntu2

B.3. AMD Ryzen Threadripper 1950X 16-Core Processor

Detailed comparison of each operation can be found in table B.3.
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B. Performance Measurements

Setup

CPU: AMD Ryzen Threadripper 1950X 16-Core Processor
Architecture: amd64
OS: Linux 5.13.0-trunk-amd64 #1 SMP Debian 5.13.12-1 exp1 (2021-08-20) x86_64
GNU/Linux
libsodium:amd64 version: 1.9.4-5
libgcrypt:amd64 version: 1.0.18-1

B.4. Intel(R) Xeon(R) CPU E5-2630

Detailed comparison of each operation can be found in table B.4.

Setup

CPU: Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz
Architecture: amd64
OS: Linux 5.10.0-8-amd64 #1 SMP Debian 5.10.46-4 (2021-08-03) x86_64
libsodium:amd64 version: 1.0.18-1
libgcrypt:amd64 version: 1.8.7-6

B.5. Intel(R) Pentium(R) 3558U

Detailed comparison of each operation can be found in table B.5.

Setup

CPU: Intel(R) Pentium(R) 3558U @ 1.70GHz
Architecture: amd64
OS: Linux 5.10.0-8-amd64 #1 SMP Debian 5.10.46-3 (2021-07-28) x86_64
libsodium:amd64 version: 1.0.18-1
libgcrypt:amd64 version: 1.8.7-6

B.6. arm64

Detailed comparison of each operation can be found in table B.6.
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B. Performance Measurements

Setup

CPU: 8-core arm64
Architecture: ARM64
OS: Linux ten64 5.11.0-31-generic #33+testsfp1 SMP Mon Aug 23 16:07:41 UTC 2021
aarch64 aarch64 aarch64 GNU/Linux
libsodium:arm64 version: 1.8.7-2ubuntu2.1
libgcrypt:arm64 version: 1.0.18-1

B.7. AMD Ryzen Embedded R1606G

Detailed comparison of each operation can be found in table B.7.

Setup

CPU: 4-core AMD Ryzen Embedded R1606G with Radeon Vega Gfx
Architecture: amd64
OS: Linux computer 5.13.0-25-generic #26-Ubuntu SMP Fri Jan 7 15:48:31 UTC 2022
x86_64 x86_64 x86_64 GNU/Linux
libsodium:amd64 version: 1.8.7-5ubuntu2
libgcrypt:amd64 version: 1.0.18-1build1

B.8. risc64

Detailed comparison of each operation can be found in table B.8.

Setup

CPU: 4-core risc64 processor
OS: Linux risc-v-unleashed-000 5.11.0-1022-generic #23 20.04.1-Ubuntu SMP Thu
Oct 21 10:16:27 UTC 2021 riscv64 riscv64 riscv64 GNU/Linux
libsodium:riscv64 version: 1.8.7-5ubuntu2
libgcrypt:riscv64 version: 1.0.18-1build1

B.9. POWER9

Detailed comparison of each operation can be found in table B.9.
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B. Performance Measurements

Setup

CPU: 176-core power9
architecture: pp64le
OS: Linux power9 5.11.0-34-generic #36-Ubuntu SMP Thu Aug 26 19:19:54 UTC 2021
ppc64le ppc64le ppc64le GNU/Linux
libsodium:a::ppc64el version: 1.8.7-2ubuntu2.1
libgcrypt::ppc64el version: 1.0.18-1

B.10. ARMv7 Processor

Detailed comparison of each operation can be found in table B.10.

Setup

CPU: 8-core ARMv7 Processor rev 3 (v7l) Architecture: armv7
OS: Linux odroidxu4 4.14.150-odroidxu4 #2 SMP PREEMPTMon Oct 28 08:07:45 CET
2019 armv7l GNU/Linux
libsodium:armhf version: 1.9.4-5
libgcrypt:armhf version: 1.0.18-1

B.11. Performance of the Security Module

These performancemeasurements are only done on one hardware setup. The performance
tests of the cryptographic routines are more meaningful, the architecture of the Taler ex-
change could change a lot. Furthermore, there could be made performance improvements
at costs of security by doing the operations requiring the private keys directly in the httpd
process. Because of security reasons, the current design with the security module makes
a lot of sense. It has to be kept in mind that the following performance benchmarks are
interesting to see, but could vary a lot with changes inside the codebase. The performance
of the signatures with the security module can be found in table B.11

Setup

CPU: 8-core AMD Ryzen 7 PRO 5850U
OS: Ubuntu 21.10 Linux 5.13.0-25-generic #26-Ubuntu SMP Fri Jan 7 15:48:31 UTC
2022 x86_64 x86_64 x86_64 GNU/Linux
libsodium version: 1.0.18-1build1
libgcrypt version: 1.8.7-5ubuntu2
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 0.204 ms

RSA 1024 bit 10x key generation 126 ms

RSA 2048 bit 10x key generation 903 ms

RSA 3072 bit 10x key generation 2684 ms

RSA 4096 bit 10x key generation 10 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 0.444 ms

CS 10x derivation of blinding secrets 0.094 ms

CS 10x blinding 3.332 ms

RSA 1024 bit 10x blinding 1.282 ms

RSA 2048 bit 10x blinding 3.012 ms

RSA 3072 bit 10x blinding 5 ms

RSA 4096 bit 10x blinding 9 ms

CS 10x signing 0.077 ms

RSA 1024 bit 10x signing 7 ms

RSA 2048 bit 10x signing 34 ms

RSA 3072 bit 10x signing 86 ms

RSA 4096 bit 10x signing 183 ms

CS 10x unblinding 0.001 ms

RSA 1024 bit 10x unblinding 2.991 ms

RSA 2048 bit 10x unblinding 10 ms

RSA 3072 bit 10x unblinding 24 ms

RSA 4096 bit 10x unblinding 44 ms

CS 10x verifying 1.358 ms

RSA 1024 bit 10x verifying 0.876 ms

RSA 2048 bit 10x verifying 1.836 ms

RSA 3072 bit 10x verifying 3.075 ms

RSA 4096 bit 10x verifying 5 ms

Table B.1.: Comparison on AMD Ryzen 7
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 1.05 ms

RSA 1024 bit 10x key generation 189 ms

RSA 2048 bit 10x key generation 1555 ms

RSA 3072 bit 10x key generation 5000 ms

RSA 4096 bit 10x key generation 11 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 2.261 ms

CS 10x derivation of blinding secrets 0.521 ms

CS 10x blinding 13 ms

RSA 1024 bit 10x blinding 2.6 ms

RSA 2048 bit 10x blinding 4.12 ms

RSA 3072 bit 10x blinding 7 ms

RSA 4096 bit 10x blinding 11 ms

CS 10x signing 0.405 ms

RSA 1024 bit 10x signing 9 ms

RSA 2048 bit 10x signing 44 ms

RSA 3072 bit 10x signing 108 ms

RSA 4096 bit 10x signing 216 ms

CS 10x unblinding 0.005 ms

RSA 1024 bit 10x unblinding 3.353 ms

RSA 2048 bit 10x unblinding 12 ms

RSA 3072 bit 10x unblinding 27 ms

RSA 4096 bit 10x unblinding 47 ms

CS 10x verifying 4.413 ms

RSA 1024 bit 10x verifying 1.202 ms

RSA 2048 bit 10x verifying 2.304 ms

RSA 3072 bit 10x verifying 4.094 ms

RSA 4096 bit 10x verifying 6 ms

Table B.2.: Comparison on Intel(R) Core(TM) i7-8565U
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 0.442 ms

RSA 1024 bit 10x key generation 145 ms

RSA 2048 bit 10x key generation 1167 ms

RSA 3072 bit 10x key generation 6000 ms

RSA 4096 bit 10x key generation 11 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 1.043 ms

CS 10x derivation of blinding secrets 0.242 ms

CS 10x blinding 7 ms

RSA 1024 bit 10x blinding 2.258 ms

RSA 2048 bit 10x blinding 4.744 ms

RSA 3072 bit 10x blinding 9 ms

RSA 4096 bit 10x blinding 14 ms

CS 10x signing 0.270 ms

RSA 1024 bit 10x signing 10 ms

RSA 2048 bit 10x signing 47 ms

RSA 3072 bit 10x signing 119 ms

RSA 4096 bit 10x signing 248 ms

CS 10x unblinding 0.003 ms

RSA 1024 bit 10x unblinding 4.086 ms

RSA 2048 bit 10x unblinding 14 ms

RSA 3072 bit 10x unblinding 34 ms

RSA 4096 bit 10x unblinding 60 ms

CS 10x verifying 2.392 ms

RSA 1024 bit 10x verifying 1.137 ms

RSA 2048 bit 10x verifying 2.797 ms

RSA 3072 bit 10x verifying 5 ms

RSA 4096 bit 10x verifying 7 ms

Table B.3.: Comparison on AMD Ryzen Threadripper 1950X
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 0.606 ms

RSA 1024 bit 10x key generation 329 ms

RSA 2048 bit 10x key generation 3210 ms

RSA 3072 bit 10x key generation 12 000 ms

RSA 4096 bit 10x key generation 40 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 1.527 ms

CS 10x derivation of blinding secrets 0.329 ms

CS 10x blinding 9 ms

RSA 1024 bit 10x blinding 4.026 ms

RSA 2048 bit 10x blinding 9 ms

RSA 3072 bit 10x blinding 18 ms

RSA 4096 bit 10x blinding 27 ms

CS 10x signing 0.274 ms

RSA 1024 bit 10x signing 21 ms

RSA 2048 bit 10x signing 96 ms

RSA 3072 bit 10x signing 237 ms

RSA 4096 bit 10x signing 482 ms

CS 10x unblinding 0.004 ms

RSA 1024 bit 10x unblinding 7 ms

RSA 2048 bit 10x unblinding 25 ms

RSA 3072 bit 10x unblinding 58 ms

RSA 4096 bit 10x unblinding 99 ms

CS 10x verifying 4.334 ms

RSA 1024 bit 10x verifying 2.190 ms

RSA 2048 bit 10x verifying 5 ms

RSA 3072 bit 10x verifying 11 ms

RSA 4096 bit 10x verifying 14 ms

Table B.4.: Comparison on Intel(R) Xeon(R) CPU E5-2630
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 0.53 ms

RSA 1024 bit 10x key generation 524 ms

RSA 2048 bit 10x key generation 3357 ms

RSA 3072 bit 10x key generation 15 000 ms

RSA 4096 bit 10x key generation 37 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 1.375 ms

CS 10x derivation of blinding secrets 0.349 ms

CS 10x blinding 8 ms

RSA 1024 bit 10x blinding 4.86 ms

RSA 2048 bit 10x blinding 11 ms

RSA 3072 bit 10x blinding 19 ms

RSA 4096 bit 10x blinding 31 ms

CS 10x signing 0.283 ms

RSA 1024 bit 10x signing 26 ms

RSA 2048 bit 10x signing 117 ms

RSA 3072 bit 10x signing 292 ms

RSA 4096 bit 10x signing 571 ms

CS 10x unblinding 0.003 ms

RSA 1024 bit 10x unblinding 8 ms

RSA 2048 bit 10x unblinding 30 ms

RSA 3072 bit 10x unblinding 67 ms

RSA 4096 bit 10x unblinding 111 ms

CS 10x verifying 3.769 ms

RSA 1024 bit 10x verifying 2.616 ms

RSA 2048 bit 10x verifying 6 ms

RSA 3072 bit 10x verifying 11 ms

RSA 4096 bit 10x verifying 17 ms

Table B.5.: Comparison on Intel(R) Pentium(R) 3558U
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 2.896 ms

RSA 1024 bit 10x key generation 839 ms

RSA 2048 bit 10x key generation 8000 ms

RSA 3072 bit 10x key generation 17 000 ms

RSA 4096 bit 10x key generation 82 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 6 ms

CS 10x derivation of blinding secrets 0.713 ms

CS 10x blinding 23 ms

RSA 1024 bit 10x blinding 11 ms

RSA 2048 bit 10x blinding 28 ms

RSA 3072 bit 10x blinding 51 ms

RSA 4096 bit 10x blinding 81 ms

CS 10x signing 0.321 ms

RSA 1024 bit 10x signing 57 ms

RSA 2048 bit 10x signing 263 ms

RSA 3072 bit 10x signing 685 ms

RSA 4096 bit 10x signing 1385 ms

CS 10x unblinding 0.006 ms

RSA 1024 bit 10x unblinding 23 ms

RSA 2048 bit 10x unblinding 79 ms

RSA 3072 bit 10x unblinding 171 ms

RSA 4096 bit 10x unblinding 296 ms

CS 10x verifying 11ms

RSA 1024 bit 10x verifying 5 ms

RSA 2048 bit 10x verifying 15 ms

RSA 3072 bit 10x verifying 27 ms

RSA 4096 bit 10x verifying 45 ms

Table B.6.: Comparison on arm64
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 2.373 ms

RSA 1024 bit 10x key generation 184 ms

RSA 2048 bit 10x key generation 2132 ms

RSA 3072 bit 10x key generation 8000 ms

RSA 4096 bit 10x key generation 21 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 1.09 ms

CS 10x derivation of blinding secrets 0.43 ms

CS 10x blinding 6 ms

RSA 1024 bit 10x blinding 3.886 ms

RSA 2048 bit 10x blinding 7 ms

RSA 3072 bit 10x blinding 14 ms

RSA 4096 bit 10x blinding 23 ms

CS 10x signing 0.379 ms

RSA 1024 bit 10x signing 15 ms

RSA 2048 bit 10x signing 71 ms

RSA 3072 bit 10x signing 177 ms

RSA 4096 bit 10x signing 357 ms

CS 10x unblinding 0.001 ms

RSA 1024 bit 10x unblinding 6 ms

RSA 2048 bit 10x unblinding 24 ms

RSA 3072 bit 10x unblinding 53 ms

RSA 4096 bit 10x unblinding 93 ms

CS 10x verifying 2.610 ms

RSA 1024 bit 10x verifying 2.303 ms

RSA 2048 bit 10x verifying 4.386 ms

RSA 3072 bit 10x verifying 7 ms

RSA 4096 bit 10x verifying 11 ms

Table B.7.: Comparison on AMD Ryzen Embedded R1606G
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 4.144 ms

RSA 1024 bit 10x key generation 2923 ms

RSA 2048 bit 10x key generation 28 000 ms

RSA 3072 bit 10x key generation 174 000 ms

RSA 4096 bit 10x key generation 600 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 10 ms

CS 10x derivation of blinding secrets 2.514 ms

CS 10x blinding 72 ms

RSA 1024 bit 10x blinding 37 ms

RSA 2048 bit 10x blinding 93 ms

RSA 3072 bit 10x blinding 170 ms

RSA 4096 bit 10x blinding 277 ms

CS 10x signing 1.697 ms

RSA 1024 bit 10x signing 215 ms

RSA 2048 bit 10x signing 1040 ms

RSA 3072 bit 10x signing 2883 ms

RSA 4096 bit 10x signing 5000 ms

CS 10x unblinding 0.022 ms

RSA 1024 bit 10x unblinding 62 ms

RSA 2048 bit 10x unblinding 150 ms

RSA 3072 bit 10x unblinding 275 ms

RSA 4096 bit 10x unblinding 431 ms

CS 10x verifying 29 ms

RSA 1024 bit 10x verifying 22 ms

RSA 2048 bit 10x verifying 54 ms

RSA 3072 bit 10x verifying 99 ms

RSA 4096 bit 10x verifying 166 ms

Table B.8.: Comparison on risc64
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 0.275 ms

RSA 1024 bit 10x key generation 290 ms

RSA 2048 bit 10x key generation 3743 ms

RSA 3072 bit 10x key generation 15 000 ms

RSA 4096 bit 10x key generation 45 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 0.749 ms

CS 10x derivation of blinding secrets 0.267 ms

CS 10x blinding 4.996 ms

RSA 1024 bit 10x blinding 3.952 ms

RSA 2048 bit 10x blinding 10 ms

RSA 3072 bit 10x blinding 17 ms

RSA 4096 bit 10x blinding 27 ms

CS 10x signing 0.221 ms

RSA 1024 bit 10x signing 25 ms

RSA 2048 bit 10x signing 135 ms

RSA 3072 bit 10x signing 381 ms

RSA 4096 bit 10x signing 762 ms

CS 10x unblinding 0.002 ms

RSA 1024 bit 10x unblinding 9 ms

RSA 2048 bit 10x unblinding 34 ms

RSA 3072 bit 10x unblinding 80 ms

RSA 4096 bit 10x unblinding 141 ms

CS 10x verifying 2.458 ms

RSA 1024 bit 10x verifying 2.365 ms

RSA 2048 bit 10x verifying 6 ms

RSA 3072 bit 10x verifying 10 ms

RSA 4096 bit 10x verifying 16 ms

Table B.9.: Comparison on POWER9
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B. Performance Measurements

Signature Scheme Operation Speed

CS 10x key generation 1.719 ms

RSA 1024 bit 10x key generation 1050 ms

RSA 2048 bit 10x key generation 8000 ms

RSA 3072 bit 10x key generation 53 000 ms

RSA 4096 bit 10x key generation 159 000 ms

CS 10x r0, r1 derive and R1,R2 calculation 3.621 ms

CS 10x derivation of blinding secrets 0.514 ms

CS 10x blinding 24 ms

RSA 1024 bit 10x blinding 10 ms

RSA 2048 bit 10x blinding 26 ms

RSA 3072 bit 10x blinding 45 ms

RSA 4096 bit 10x blinding 78 ms

CS 10x signing 0.481 ms

RSA 1024 bit 10x signing 87 ms

RSA 2048 bit 10x signing 385 ms

RSA 3072 bit 10x signing 1038 ms

RSA 4096 bit 10x signing 2073 ms

CS 10x unblinding 0.008 ms

RSA 1024 bit 10x unblinding 26 ms

RSA 2048 bit 10x unblinding 90 ms

RSA 3072 bit 10x unblinding 195 ms

RSA 4096 bit 10x unblinding 344 ms

CS 10x verifying 11 ms

RSA 1024 bit 10x verifying 5 ms

RSA 2048 bit 10x verifying 15 ms

RSA 3072 bit 10x verifying 28 ms

RSA 4096 bit 10x verifying 42 ms

Table B.10.: Comparison on ARMv7
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B. Performance Measurements

Signature Scheme Test Speed

CS 100 sequential signature operations 2.591 ms

RSA 1024 bit 100 sequential signature operations 79 ms

RSA 2048 bit 100 sequential signature operations 350 ms

RSA 3072 bit 100 sequential signature operations 893 ms

RSA 4092 100 sequential signature operations 1811 ms

CS 100 parallel signature operations 14 ms

RSA 1024 bit 100 parallel signature operations 125 ms

RSA 2048 bit 100 parallel signature operations 573ms

RSA 3072 bit 100 parallel signature operations 1420 ms

RSA 4092 100 parallel signature operations 3279 ms

CS 800 parallel signature operations 19 ms

RSA 1024 bit 800 parallel signature operations 137 ms

RSA 2048 bit 800 parallel signature operations 653 ms

RSA 3072 bit 800 parallel signature operations 1451 ms

RSA 4092 800 parallel signature operations 3388 ms

Table B.11.: Performance comparison of the security module
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C. Redesigned RSA Protocols

In order to bring the RSA and Clause Blind Schnorr Signatures protocols closer, this chapter
describes a variant of the RSA protocols with the same changes as in the Clause Blind
Schnorr Signatures versions (where they can be applied).

C.1. Withdraw Protocol

The changes to the RSA witdhdraw protocol (see Figure C.1) are limited to the derivation
of the coin and blinding factor.

C.2. Refresh Protocol

The changes to the refresh protocol are related to the derivation of transfer secrets and
subsequent operations, see Figure C.2, Figure C.3 and Figure C.4.

C.3. Linking Protocol

The changes are described in Figure C.5.
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C. Redesigned RSA Protocols

Customer Exchange
knows: knows:
reserve keys ws,Wp reserve public keyWp

denomination public keyDp = e,N denomination keys ds, Dp

generate withdraw secret:
ω := randombytes(32)
persist 〈ω,Dp〉
derive coin key pair:
cs := HKDF(256, ω, ”cs”)
Cp := Ed25519.GetPub(cs)
blind:
bs := HKDF(256, ω, ”b-seed”)
r := FDH(bs)
m′ := FDH(N,Cp) ∗ re mod N
sign with reserve private key:
ρW := 〈Dp,m

′〉
σW := Ed25519.Sign(ws, ρW )

ρ=Wp,σW ,ρW−−−−−−−−−−−→
〈Dp,m

′〉 := ρW
verify ifDp is valid
check Ed25519.Verify(Wp, ρW , σW )
σ′
c = (m′)ds mod N

decrease balance if sufficient and
persist 〈Dp, s〉

σ′
c←−−−−−−−−−−−

unblind:
σc = σ′

c ∗ r−1

verify signature:
check if σe

c = FDH(N,Cp)

resulting coin: cs, Cp, σc, Dp

implementation note: minimum of
persisted values is 〈ω, σc〉

Figure C.1.: Redesigned RSA withdrawal process
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C. Redesigned RSA Protocols

RefreshDerive(t, 〈e,N〉, Cp)

T := Curve25519.GetPub(t)
x := ECDH-EC(t, Cp)

bs := HKDF(256, x, ”b-seed”)
r := FDH(bs)
c′s := HKDF(256, x, "c")
C ′

p := Ed25519.GetPub(c′s)

m := re ∗ C ′
p mod N

return 〈T, c′s, C ′
p,m〉

Figure C.2.: Redesigned RSA RefreshDerive algorithm
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C. Redesigned RSA Protocols

Customer Exchange
knows: knows:
denomination public keyDp(i) denomination keys ds(i), Dp(i)

coin0 = 〈Dp(0), c
(0)
s , C

(0)
p , σ

(0)
c 〉

Select〈Nt, et〉 := Dp(t) ∈ Dp(i)

ω := randombytes(32)
persist 〈ω,Dp(t)〉
for i = 1, . . . , κ :
ti := HKDF(256, ω, ”ti”)
Xi := RefreshDerive(ti, Dp(t), C

(0)
p )

(Ti, c
(i)
s , C

(i)
p ,mi) := Xi

endfor
hT := H(T1, . . . , Tk)
hm := H(m1, . . . ,mk)
hC := H(ht, hm)

ρRC := 〈hC , Dp(t), Dp(0), C
(0)
p , σ

(0)
C 〉

σRC := Ed25519.Sign(c(0)s , ρRC)
Persist refresh-request〈ω, ρRC , σRC〉

ρRC ,σRC−−−−−−−−−−−→

(hC , Dp(t), Dp(0), C
(0)
p , σ

(0)
C = ρRC)

checkEd25519.Verify(C(0)
p , σRC , ρRC)

x→ GetOldRefresh(ρRC)
Comment: GetOldRefresh(ρRC 7→ {⊥, γ})
if x = ⊥
v := Denomination(Dp(t))

〈e0, N0〉 := Dp(0)

check IsOverspending(C(0)
p , Dp(0), v)

checkDp(t) ∈ {Dp(i)}
check FDH(N0, C

(0)
p ) ≡N0 (σ

(0)
0 )e0

MarkFractionalSpend(C(0)
p , v)

γ ← {1, . . . , κ}
Persist refresh-record 〈ρRC , γ〉
else
γ := x
endif

γ←−−−−−−−−−−−

Continued in figure 2.16

Figure C.3.: Redesigned RSA refresh protocol (commit phase)
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C. Redesigned RSA Protocols

Customer Exchange
Continuation of figure 2.15

γ←−−−−−−−−−−−
check IsConsistentChallenge(ρRC , γ)
Comment: IsConsistentChallenge
(ρRC , γ) 7→ {⊥,>}

Persist refresh-challenge〈ρRC , γ〉
S := 〈t1, . . . , tγ−1, tγ+1, . . . , tκ〉
ρL = 〈C(0)

p , Dp(t), Tγ ,mγ〉
ρRR = 〈Tγ ,mγ , S〉
σL = Ed25519.Sign(c(0)s , ρL)

ρRR,ρL,σL−−−−−−−−−−−→
〈T ′

γ ,m
′
γ , S〉 := ρRR

〈t1, . . . , tγ−1, tγ+1, . . . , tκ〉) := S

check Ed25519.Verify(C(0)
p , σL, ρL)

fori = 1, . . . , γ − 1, γ + 1, . . . , κ

Xi := RefreshDerive(ti, Dp(t), C
(0)
p )

〈Ti, c
(i)
s , C

(i)
p ,mi〉 := Xi

endfor
h′T = H(T1, . . . , Tγ−1, T

′
γ , Tγ+1, . . . , Tκ)

h′m = H(m1, . . . ,mγ−1,m
′
γ ,mγ+1, . . . ,mκ)

h′C = H(h′T , h
′
m)

check hC = h′C
σ
(γ)
C := mds(t)

persist 〈ρL, σL, S〉
σ
(γ)
C←−−−−−−−−−−−

σ
(γ)
C := r−1σ

(γ)
C

check if (σ(γ)
C )et ≡Nt C

(γ)
p

Persist coin〈Dp(t), c
(γ)
s , C

(γ)
p , σ

(γ)
C 〉

Figure C.4.: Redesigned RSA refresh protocol (reveal phase)

126



C. Redesigned RSA Protocols

Customer Exchange
knows: knows:
coin0 = 〈Dp(0), c

(0)
s , C

(0)
p , σ

(0)
C 〉

Cp(0)−−−−−−−−−−−→
L := LookupLink(Cp(0))

Comment: LookupLink(Cp) 7→ {〈ρ(i)L ,

σ
(i)
L , σ

(i)
C 〉}

L←−−−−−−−−−−−

for 〈ρ(i)L , σ
(i)
L , σ

(i)
C 〉 ∈ L

〈Ĉ(i)
p , D

(i)
p(t), T

(i)
γ ,m

(i)
γ 〉 := ρ

(i)
L

〈e(i)t , N
(i)
t 〉 := D

(i)
p(t)

check Ĉ
(i)
p ≡ C

(0)
p

check Ed25519.Verify(C(0)
p , ρ

(i)
L , σ

(i)
L )

xi := ECDH(c(0)s , T
(i)
γ )

c
(i)
s := HKDF(256, xi, "c")
C

(i)
p := Ed25519.GetPub(c(i)s )

b
(i)
s := HKDF(256, xi, ”b-seed”)
ri := FDH(b(i)s )

σ
(i)
C := (ri)

−1 ·m(i)
γ

check (σ
(i)
C )e

(i)
t ≡

N
(i)
t

C
(i)
p

(Re-)obtain coin〈D(i)
p(t), c

(i)
s , C

(i)
p , σ

(i)
C 〉

Figure C.5.: Redesigned RSA linking protocol
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