
▶ Technic and Computer Science
▶ Institute for Cybersecurity and Engineering ICE

Cashless to e-Cash
Bachelor’s Thesis

Course of study Bachelor of Science in Computer Science
Author Joel Roman Häberli
Advisor Prof. Dr. Benjamin Fehrensen
Co-advisor Prof. Dr. Christian Grothoff
Expert Dr. Alain Hiltgen, UBS

Version 1.0 of June 11, 2024

Acknowledgements

I would like to thank Prof. Dr. Benjamin Fehrensen and Prof. Dr. Christian Grothoff
for their support during the thesis. Their knowledge and feedbacks helped me to work
towards the thesis objectives and the reflection of my work. They pushed me to imple-
ment the product and motivated me to work hard.

The GNU Taler team deserves a big thank you to discuss, reflect and sharpen the Ter-
minals API which was an important part of the thesis.

Also I thank my colleagues from the class who motivated me during the thesis. Espe-
cially I would like to thank Jan Fuhrer for the nice Friday night coding sessions, Chris-
tian Blättler for the valuable discussion about GNU Taler and Andy Bigler for the ex-
change about Android applications. They were crucial to gain a better understanding
of how the components work and how I must do the implementation.

Additionally, I would like to thank Meret Staub for her critical thoughts during the
proofreading of the thesis.

Thank you to Bruno Fauser who generously provided the title picture to me.

Last but not least I thank Flurina from all my heart. You were not mad at me when I
cancelled dinner, because I wanted to write some code.

iii

Abstract

This thesis develops and implements a framework that allows for cashless withdrawals
using GNU Taler, with the objective of increasing the easy onboarding and acceptance
ofGNUTaler as payment system. Currently, theGNUTaler payment systempermits the
withdrawal of digital cash using different means of payment. However, GNU Taler cur-
rently lacks the possibility using cashless payment means such as credit cards to with-
draw digital cash. To address this gap, this thesis introduces a novel component, called
cashless2ecash (C2EC),whichestablishes a reliable connectionbetween theTaler ecosys-
tem and payment service provider’s terminals. The reference implementation estab-
lishes the process between the payment service provider Wallee and the GNU Taler
Exchange by implementing the new Terminals API in C2EC. The implemented process
guarantees the finality of the transaction to the GNU Taler Exchange and the terminal
operator. The finality enables the withdrawal of digital cash using GNU Taler with-
out the use of cash. The liability for the transaction is borne by the payment service
provider, which assumes the guarantees for the GNU Taler Exchange.

v

Contents

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Perspectives . 2

1.2.1 Taler Exchange (C2EC) . 2
1.2.2 Terminal Application . 2
1.2.3 Taler Wallet . 2

1.3 Goal . 3
1.3.1 cashless2ecash (C2EC) . 3
1.3.2 Paydroid Payment Terminal . 3

2 Overview 5
2.1 Components . 5
2.2 Process . 6

2.2.1 The Terminal . 9
2.2.2 The C2EC . 10
2.2.3 The Wallet . 10

3 Architecture 13
3.1 C2EC . 13

3.1.1 C2EC Perspective . 13
3.1.2 Withdrawal-Operation State Transitions 13
3.1.3 Authentication . 14
3.1.4 The C2EC RESTful API . 15
3.1.5 C2EC Entities . 16

3.2 Wallee . 17
3.2.1 Wallee Perspective . 18
3.2.2 Wallee Terminal . 18
3.2.3 Wallee Backend and API . 19

3.3 Payto Wallee-Transaction Extension . 20
3.3.1 Payto refund using Wallee . 20
3.3.2 Extensibility . 20

vii

Contents

4 Implementation 21
4.1 C2EC . 21

4.1.1 Endpoints . 21
4.1.2 Abort Handling . 24
4.1.3 Processes . 29
4.1.4 Providers . 30
4.1.5 Fees . 33

4.2 Wallee Payment Terminal . 35
4.2.1 Withdrawal Flow . 35
4.2.2 Screens . 37
4.2.3 Abort Handling . 44
4.2.4 Fulfilling Transactions . 44

4.3 Database . 46
4.3.1 Schema . 46
4.3.2 Triggers . 50
4.3.3 Migrating The Database . 50

4.4 Security . 50
4.4.1 General Security Considerations 50
4.4.2 Withdrawal Operation Identifier (WOPID) 52
4.4.3 Database Security . 52
4.4.4 Authenticating At The Wallee REST API 53
4.4.5 API Access . 54
4.4.6 Registering Providers And Terminals 55
4.4.7 Hijacking And Stealing Terminals 55

4.5 C2EC CLI . 55
4.5.1 Adding Wallee Provider . 56
4.5.2 Adding Wallee Terminal . 56
4.5.3 Deactivating Terminals . 56
4.5.4 Setting Up The Simulation . 56

4.6 Testing . 57
4.6.1 Wallee Test System . 57

4.7 Deployment . 58
4.7.1 Preparation . 58
4.7.2 Setup . 58
4.7.3 Deploy . 59
4.7.4 Migration And Releases . 60

5 Results 61
5.1 Discussion . 61
5.2 Limitations And Future Work . 62

5.2.1 Extensions . 62
5.2.2 Improvements . 63

viii

Contents

5.3 Conclusion . 64
5.3.1 Technically . 64
5.3.2 Methodically . 65
5.3.3 Personally . 66

Bibliography 69

List of Figures 73

List of Tables 75

ix

1 Introduction

1.1 Motivation

Which payment systems do you use in your daily live and why? Probably one you know
it is universally accepted, reliable, secure and the payment goes through more or less
instantly.

InMarch 2022, the European Central Bank (ECB) found that an easy onboarding proce-
dure is one of themost important factors influencing the acceptance of the Digital Euro
as a newpayment system [1]. If the process of onboarding newusers is straightforward,
this will have a positive effect on the universal acceptance of digital cash using GNU
Taler. The ECB asserts that universal acceptance, or the ability to "pay anywhere," is
themost significant attribute of an effective digital payment instrument for consumers
across the EU, regardless of age [2]. Therefore, an easy onboarding procedure is a cru-
cial feature for digital cash to be adopted by the public.

The findings of the European Central Bank also extend to the GNU Taler, the software-
basedmicrotransaction and electronic payment system. For theGNUTaler to bewidely
accepted as a payment system, it is of utmost importance that the onboarding process
for new users be as straightforward and user-friendly as possible. For this reason, it is
essential that a variety of methods exist for the withdrawal of digital cash in Taler.

This thesis develops an additional withdrawal method by implementing a framework
that allows cashless withdrawals in GNU Taler. Currently, it is possible to withdraw
digital cash from a bank that operates a Taler Exchange and integrates the respective
API. At the time of writing, only two banks are engaged in the process of establishing a
Taler Exchange; GLSbank [3] andMagNet bank [4]. Furthermore, at theBernUniversity
of Applied Sciences, an exchange is operated allowing the withdrawal of digital cash at
the secretariat using cash.

To make the access to digital cash using Taler easier and allow a faster uptake of the
payment system Taler, a framework for cashless withdrawal of digital cash is proposed
and implemented in order to open new doors for the integration and adoption of the
Taler payment system within society.

To make the withdrawal using a credit card or other means of payment possible, the
GNUTaler facilitiesmust be extended and integratedwith established payment service
providers. The integration must enable the communication between the Taler ecosys-
tem and payment service providers and their terminals.

1

1 Introduction

To address this communication gap, this thesis introduces a new component, called
cashless2ecash (C2EC),whichestablishes a reliable connectionbetween theTaler ecosys-
tem and payment service provider’s terminals. The C2EC component enables the Taler
Exchange to issue digital cash to a customer. Therefore the Exchange is not putting his
trust on cash received but rather on the promise of a a terminal provider to put the
received digital cash in a location, controlled by the Exchange eventually (e.g. a bank
account owned by the Exchange).

Designing the user-experience along established patterns will lead to a better uptake of
GNU Taler by enabling money to flow from existing payment systems into GNU Taler’s
digital cash.

1.2 Perspectives

To support readers and implementers, three perspectives shall be kept in mind. They
have different views on the process but need to interact with each other seamlessly.

1.2.1 Taler Exchange (C2EC)

The perspective of the Taler Exchange includes all processes within C2EC component
including the interfaces for the terminal application, terminal backend and the wallet
of the customer. The Taler Exchange wants to allow withdrawal of digital digital cash
only to users who pay the equivalent value to the Exchange. For this the Taler Exchange
must make sure the payment is final on the side of the payment service provider. Oth-
erwise the Exchange is at risk of loosing money.

1.2.2 Terminal Application

The perspective of the terminal application includes all processes within the applica-
tion which interacts with the user, their wallet and credit card allowing the withdrawal
of digital cash. The terminal application wants to conveniently allow the withdrawal of
digital cash. Fees must be considered, since the withdrawal process is a service which
costs the payment service provider money in form of integration and maintenance ef-
forts. To cover its costs, the provider might want to add some fees on the withdrawal.

1.2.3 Taler Wallet

Thewallet holds the digital cash owned by the customer. Thewallet wants to eventually
collect the digital cash from the Taler Exchange.

2

1.3 Goal

1.3 Goal

The objective of this thesis is to develop and implement a framework for the cashless
withdrawal of digital cash in GNU Taler. The framework implements the process that
digital cash in GNU Taler can be withdrawn at a terminal of an established payment
service provider. The withdrawal process on the side of the provider terminal is imple-
mented on the Paydroid platform, which is supplied by the payment providerWallee.

The framework aims to achieve the following key objectives:

1. Finality: The operator of the Taler Exchange is not liable for any losses incurred
in connection with the payment.

2. Convenience: The user experience adheres to established patterns.

3. Abort: The payment flow is robust and secure, and the option to abort transac-
tions without the loss of money is available.

1.3.1 cashless2ecash (C2EC)

To achieve these goals C2EC is implemented as part of GNU Taler. C2EC mediates be-
tween the Taler Exchange and the terminal provider. This includes checking that the
transaction of the debitor reaches the account of the Exchange and the digital cash can
be withdrawn by the user using their wallet.

1.3.2 Paydroid Payment Terminal

TheWallee payment terminal, interfaceswith payment cards (credit cards, debit cards)
and other means of payment (e.g. Twint) to make electronic fund transfers, i.e. a fund
transfer to a given GNU Taler Exchange. For our purpose, we extend the functionality
of the terminal to initiate the corresponding counter payment from the Exchange to
the GNU Taler wallet of the payee.

3

2 Overview

2.1 Components

Figure 2.1: Involved components and devices

The component diagram in Figure 2.1 shows the components involved by the with-
drawal using the terminal. Besides the mean of payment owned by the user, the Taler
payment system and a payment service provider (such as Wallee) is involved.

To initiate the withdrawal, the wallet scans the QR code (1) and registers a reserve pub-
lic key (2). After authorizing (3) the transaction using a credit card or other supported

5

2 Overview

payment means, the transaction is authorized (4) via the payment service provider
backend. The payment service provider sends back an authorization result (5) before
the C2EC component receives the confirmation of payment from the payment service
provider (6). As soon the payment was confirmed the wallet can withdraw the digital
cash from the Exchange (7).

2.2 Process

Figure 2.2: Diagram of included components and their interactions

Figure 2.2 shows the interactions of the components. In a initial step (before theprocess
is effectively started as depicted), the customer or owner of the terminal selects the
Exchange, which is to be used for the withdrawal. The process is then started and goes
through the following steps:

0. TheWallee terminal requests to be notifiedwhenparameters are selected byC2EC.

1. The wallet scans the QR code at the terminal.

6

2.2 Process

2. The wallet registers a reserve public key and initializes the mapping to the with-
drawal operation identifier (WOPID).

3. The Terminals API of C2EC notifies the terminal, that the parameters were se-
lected.

4. The payment terminal initiates a payment to the account of the GNU Taler Ex-
change. For the payment the payment terminal requests a payment mean and
the verification such as a pin code to authorize the payment.

5. The terminal triggers the payment through the Wallee backend.

6. The terminal receives the result of the payment, which is either successful or not.

7. The terminal sends a payment confirmation request to the Bank Integration API
of C2EC.

8. TheC2ECcomponent seeks confirmation for thepaymentby requesting the trans-
action of the Wallee backend.

9. The C2EC updates the database by either setting the status of the withdrawal op-
eration to confirmed or abort, depending on the response of the Wallee backend.

10. The Exchange-Wirewatch asks the Wire Gateway API of C2EC for a list of trans-
actions. Confirmed transaction will lead to the generation of a reserve at the Ex-
change.

11. The wallet asks the Exchange to be notified, when a reserve with the reserve pub-
lic key becomes available. The digital cash is then withdrawn by the wallet.

7

Figure 2.3: Process of a withdrawal using a credit card

2.2 Process

The diagram in Figure 2.3 shows the high level flow towithdrawdigital cash using
the credit card terminal and Taler. It shows when the components of Figure 2.2
interact with each other. It shows the implementation of the flow. terminal, wal-
let and Exchange are linked leveraging aWOPID initially generated by the termi-
nal and presented to the Exchange by the withdrawing wallet accompanied by a
reserve public key.

The process requires the terminal, the wallet, the C2EC component and the Ex-
change who interact with each other. In this section the highlevel process is ex-
plained as showed in Figure 2.3.

2.2.1 The Terminal

The terminal initiates the withdrawal leveraging an application which works as
follows:

1. At startup of the application, the terminal loads the C2EC configuration.

2. When a user wishes to do a withdrawal, the owner of the terminal opens
the application and initiates a newwithdrawal entering theAmount towith-
draw.

a) The terminal sets up a withdrawal by asking C2EC to setup aWOPID.

b) The terminal calculates fees and shows them to the customer.

c) TheWOPID is packed into a QR code (with Exchange and amount en-
tered by the terminal owner).

d) The application starts long polling at the C2EC and awaits the selection
of the reserve parameters mapped to theWOPID. The parameters are
sent by the wallet to C2EC.

e) The user accepts the offer and agrees with the ToS.

f) The QR code is displayed.

3. The user now scans the QR Code using his wallet.

4. The application receives the notification of the C2EC, that the parameters
for the withdrawal were selected.

5. The terminal executes the payment (after user presented their credit card,
using the terminal backend).

6. The terminal initiate the fund transfer to the Exchange. The customer has
to authorize the payment by presenting his payment card andpossibly their
pin. The terminal processes the payment over the an available connector
configured on the Wallee backend. Possible connectors are for example
Master Card, VISA, TWINT, Maestro, Post Finance, and others [5].

9

2 Overview

a) It presents the result to the user.

b) It tells the C2EC, that the payment was successful.

2.2.2 The C2EC

The C2EC component manages the withdrawal using a third party provider (e.g.
Wallee) and seeks guarantees in order to create a reserve containing digital cash
which can be withdrawn by the wallet.

1. The C2EC component receives the setup request for withdrawal which will
lead to generation of theWOPID.

2. The C2EC component receives a long polling request for aWOPID (from the
terminal).

3. The C2EC component receives a request including a WOPID and a reserve
public key.

4. The C2EC component validates the request and adds the key to the map-
ping. This establishes theWOPID to reserve public key mapping.

5. The C2EC component answers the long polling from the terminal.

6. The C2EC component receives the confirmation request of the terminal or
is requested to abort the withdrawal.

7. The C2EC component verifies the notification by asking the provider back-
end for confirmation.

8. TheC2ECcomponent tells theTalerWirewatch component of theExchange
about incoming transactions including the reserve public key of the with-
drawal (which will eventually create a withdrawable reserve).

2.2.3 The Wallet

Thewallet must attest its presence to the terminal by registering a reserve public
keywith the respectiveWOPIDwhichwill hold the digital cash that can eventually
be withdrawn by the wallet. The process of the wallet is already implemented
through the Bank-Integration API [6] and only documented for completeness.
The Bank-Integration API is implemented by C2EC.

1. The wallet scans the QR Code (WOPID, Exchange information and amount)
on the terminal.

2. The wallet creates a reserve key pair.

3. The wallet sends the reserve public key to C2EC using the WOPID to map
the public key to a withdrawal operation.

10

2.2 Process

4. The wallet will be notified by the answer to a long-polling request when the
digital cash is available at theExchange’s reservebelonging to the registered
reserve public key.

11

3 Architecture

3.1 C2EC

The C2EC component is the central component in the cashless withdrawal of dig-
ital cash using Taler. It coordinates and initializes the parameters and mediates
between the different stakeholders of a withdrawal. This finally allows the cus-
tomer towithdrawdigital cash froma reserve ownedby theExchange. To achieve
this, C2EC provides an API which can be integrated and used by the terminal,
wallet and the Exchange.

The API of the C2EC (cashless2ecash) component handles the flow from the cre-
ation of a C2EC mapping to the creation of the reserve. For the integration into
the Taler ecosystem, C2EC must implement the Taler Wire-Gateway API [7] and
the Taler Bank Integration API [8]. The new Terminals API [9] is the interface of
the payment service provider terminals to the GNU Taler ecosystem.

3.1.1 C2EC Perspective

From the perspective of C2EC, the system looks as follows:

▶ The C2EC component is requested by the Taler wallet to register a new
WOPID to reserve public key mapping.

▶ Then, the C2EC component is notified by the terminal (e.g. a Wallee termi-
nal) about a payment.

▶ The C2EC component confirms a payment by requesting the payment con-
firmation from the payment service provider backend (e.g. Wallee back-
end)

▶ The C2EC component runs the Taler Wire Gateway API that the respective
Taler Exchange can retrieve fresh transactions and create reserves. This
reserves are eventuallywithdrawnby the customer using their Talerwallet.

3.1.2 Withdrawal-Operation State Transitions

The C2EC component mediates between the stakeholders of a withdrawal in or-
der tomaintain the correct state of thewithdrawal. It decideswhenawithdrawal’s

13

3 Architecture

status can be transitioned. The diagram in Figure 3.1 shows the transitions of
states in which a withdrawal operation can be and which events will trigger a
transition. The term confirmation in this context means, that the backend of the
provider was asked and the transaction was successfully processed (or not). So
if a transaction was successfully processed by the provider, the final state is the
success case confirmed, where the Exchange will create a reserve and allow the
withdrawal. If the confirmation fails, indicating the provider could not process
the transaction successfully, the failure case is aborted. confirmed and aborted are
the final states.

Figure 3.1: Withdrawal Operation state transition diagram

3.1.3 Authentication

Terminals and the Exchange wire watch process who authenticate against the
C2EC API using Basic-Auth [10] must provide their respective access token. Fot
his theyprovide a Authorization: Basic $ACCESS_TOKENheader,where $ACCESS_TOKEN
is a basic-auth value configured by the operator of the Exchange consisting of the

14

3.1 C2EC

terminal username and password. The header value must begin with the prefix
specified in RFC 7617 [10]: Basic.

3.1.4 The C2EC RESTful API

All components involved in the withdrawal process must interact with the C2EC
component. Therefore this section describes the various API implemented in the
C2EC component. The description contains a short list of the consumers of the
respective API. Consumer in this context does not necessarily mean that data is
consumed but rather that the consumer uses the API to either gather data or send
requests or data to C2EC.

Terminals API

That terminals can initiate and serve withdrawals in Taler, the Terminals API [9]
is specified and implemented. The Terminals API mirrors all actions of a termi-
nal at the C2EC component. This covers following endpoints:

1. Config (/config)

2. Withdrawal setup (/withdrawals)

3. Status of the withdrawal (/withdrawals/$WOPID)

4. Confirmation Request (/withdrawals/$WOPID/check)

5. Terminal side abort (/withdrawals/$WOPID/abort)

Fees

Fees are an important aspect of the withdrawal flow using established payment
service providers. When the withdrawal operation is not supplied by some Ex-
changes as standard service, the provider possibly wants to charge fees to the
customer in order to make a profit and cover its costs. It is likely that these costs
are rolled over to the customer in form of fees. This means that a terminal must
have the capability to inform the Terminals API about fees. This can be achieved
through the confirmation request in the Terminals API. Also the Exchange oper-
ator itself wants to charge fees to cover its costs. For example cashback is causing
a lot of fees to the merchants supporting it:

de:DieHändler zahlen jedoch fürdenCashback-ServicebereitsGebühren
an die Banken. Aktuell sind es laut EHI im Schnitt 0,14 Prozent, ins-
gesamt waren das 2023 rund 17,2 Millionen Euro. [11, Crefeld, ZEIT]

15

3 Architecture

Taler Bank Integration API

Withdrawals by thewallet with a C2EC are based onwithdrawal operationswhich
register a reserve public key at the C2EC component. The provider must first
create a unique identifier for the withdrawal operation (the WOPID) to interact
with the withdrawal operation (as described in subsubsection 3.1.4) and eventu-
ally withdraw digital cash using the wallet. The withdrawal operation API is an
implementation of the Bank Integration API [8].

Taler Wire-Gateway API

The Taler Wire-Gateway API must be implemented in order to capture incoming
transactions and allow the withdrawal of digital cash. The specification of the
Taler Wire-Gateway API can be found in the official Taler documentation [7].

TheWire-GatewayAPI enables theExchange to communicatewith theC2ECcom-
ponent using the API. The Exchange fetchs final withdrawals. The finality is
guaranteed by C2EC by confirming the payment at the terminal backend. The
Wire-Gateway API is implemented as part of C2EC. When the Exchange’s wire
watch process loads a confirmed withdrawal, the transaction was successfully
processed. The Exchange will create a reserve with the corresponding reserve
public key which can then be withdrawn by the wallet with the corresponding
reserve private key.

TheWire-GatewayAPI ofC2ECdoesnot implement the testing endpoint /admin/add-
incoming. The endointwill respondwithHTTP status code 501 (not implemented).

3.1.5 C2EC Entities

The entities of the C2EC component must track two different aspects. The first is
themapping of a nonce (theWOPID) to a reserve public key to enablewithdrawals
and the second aspect is the authentication and authorization of terminals allow-
ing withdrawals owned by terminal providers likeWallee.

A detailed explanation and ERD can be found in section 4.3.

Terminal Provider

Figure 4.12 describes the provider entity of C2EC compliant terminals. The name
of the provider is important, because it decides which flow shall be taken in or-
der to attest the payment. For example will the nameWallee signal the terminal
provider to trigger the confirmation flow ofWallee once the payment notification
for the withdrawal reaches C2EC.

16

3.2 Wallee

Terminal

Entity displayed inFigure 4.13 contains information about terminals of providers.
This includes theprovider theybelong to and an access-token,which is generated
by the operator of the C2EC component. It allows authenticating the terminal. A
terminal belongs to one terminal provider.

Withdrawal

The Entity displayed in Figure 4.14 represents the withdrawal processes initiated
by terminals. This entity contains information about the withdrawal like the
amount, which terminal the withdrawal was initiated from and which reserve
public key is used to create a reserve in the Exchange.

Relationships

The structure of the three entities form a tree which is rooted at the terminal
provider. Each provider can have many terminals and each terminal can have
many withdrawals. The reverse does not apply. A withdrawal does always belong
to exactly one terminal and a terminal is always linked to exactly one provider.
These relations are installed by using foreign keys, which link the sub-entities
(terminal and withdrawal) to their corresponding owners (provider and termi-
nal). A provider owns its terminals and a terminal owns its withdrawals.

Figure 3.2: Relationships of the entities.

3.2 Wallee

Wallee offers level 1 PCI-DSS [12] compliant payment processes to its customers
[13] and allows a simple integration of its process into various kinds of merchant
systems (e.g. websites, terminals, etc).

17

3 Architecture

3.2.1 Wallee Perspective

From the perspective of Wallee, the system looks as follows:

▶ The Wallee terminal uses the new Terminals API of C2EC to get notified
about parameter selection and inform C2EC about the payment.

▶ The Wallee terminal needs the credit card (or other supported payment
means) of the customer to authorize the payment.

▶ TheWallee terminal uses theWallee Backend to authorize the payment us-
ing the supplied Android Till SDK subsubsection 3.2.2

3.2.2 Wallee Terminal

Wallee Terminals are based on Android and run a modified, certified android
version as operating system. Thus they can be used for payments and establish
strong authentication in a trusted way.

Withdrawal Operation Identifier

The Withdrawal-OPeration-IDentifier (WOPID) is leveraged by all components
to establish the connection to an entry in the withdrawal table (Figure 4.14) of
C2EC. The WOPID is therefore crucial and every participant of the withdrawal
must eventually gain knowledge about the value of theWOPID to process thewith-
drawal. TheWOPID is created by the Terminal and advertised to the Exchange by
requesting notification, when the reserve public key belonging to theWOPIDwas
received and the mapping could be created. The Wallet gains the WOPID value
when scanning the QR code at the Terminal and then sends theWOPID (and the
other parameters) to the Exchange.

Creation of theWOPID

The creation of the WOPID is a crucial step in the process. The WOPID must be
cryptographically sound. Therefore a cryptographically secure PRNG must be
leveraged. Otherwise aWOPIDmight be guessed by an attacker. This would open
the door for attacks as described in subsection 4.4.2.

Wallee Till API

Wallee supplies the Wallee Android Till SDK [14] which allows the implementa-
tion of custom application for their android based terminals. The API facilitates
the integration with the Wallee backend and uses it to authorize payments.

18

3.2 Wallee

3.2.3 Wallee Backend and API

Terminals of Wallee are used to communicate with the customer at the shop
of the merchant. The payment and processing of the transaction is run on the
Wallee Backend. The Wallee Backend is used by C2EC to attest a payment, when
a C2ECPaymentNotification message reaches C2EC. The Wallee Backend is also
used to do refunds, in case something goeswrong during the payment. Therefore
the API ofWallee Backend is used to collect this information or process a refund.
Wallee structures its API using Services. For C2EC this means that the Transaction
Service [15] and Refund Service [16] must be implemented.

Transaction Service

The Transaction Service is used by C2EC to attest a transaction was successfully
processed and the reserve can be created by the Exchange. Therefore the GET
/api/transaction/read API of the Transaction Service is used. If the returned
transaction is in state fulfill, the transaction can be stored as completion_proof for
thewithdrawal as specified in thewithdrawal table Figure 4.14 and thewithdrawal
status can be transitioned to confirmed. This will tell the Exchange to create the
reserve which can eventually be withdrawn by the wallet.

Refund Service

The Refund Service is used by C2EC in case of a refund. Therefore the C2EC gets
notified by the Exchange that the transaction shall be refunded. To trigger the
refund process at the Wallee backend, the POST /api/refund/refund is used.

Wallee Transaction State

To decide if a transactionwas successful, the states of a transactionwithinWallee
must bemapped to theworld of Taler. Thismeans that a reserve shall only be cre-
ated, if the transaction is in a statewhich allowsTaler not having any liabilities re-
garding the transaction and that Wallee could process the payment successfully.
The documentation states that only in the transaction state fulfill, the delivery of
the goods (in case ofwithdrawal thismeans, that the reserve can be created) shall
be started [17]. For the withdrawal this means, that the only interesting state for
fulfillment is the fulfill state. Every other state means, that the transaction was
not successful and the reserve shall not be created.

19

3 Architecture

3.3 Payto Wallee-Transaction Extension

RFC 8905 [18] specifies a URI scheme (complying with RFC 3986 [19]), which al-
lows to address a creditor with theoretically any protocol that can be used to pay
someone (such as IBAN, BIC etc.) in a standardized way. It introduces a registry
which holds the specific official values of the standard. The registry is supervised
by the GANA (GNUnet Assigned Numbers Authority) [20].

In case a refund becomes necessary, whichmight occur if a transaction does not
succeed or a reserve is not withdrawn within the specified time, a new target type
called wallee-transaction is registered. It takes a transaction identifier as target
identifierwhich identifies the transaction forwhich a refund process shall be trig-
gered. The idea is that the handler of the payto URI is able to deduct the transac-
tion from the payto-uri and trigger the refund process.

3.3.1 Payto refund using Wallee

Wallee allows to trigger refunds using the Refund Service of theWallee backend.
The service allows to trigger a refund given a transaction identifier. Therefore
the C2EC component can trigger the refund using the refund service if needed.
The payto-uri retrieved as debit account by the wire gateway API, is leveraged to
delegate the refund process to the Wallee Backend using the Refund Service and
parsing the transaction identifier of the payto-uri.

3.3.2 Extensibility

The flow is extensible and other providers like Wallee might be added. New pay-
ment service providers might want to register their own refund payto-uri with
the GNUAssigned Numbers Authority (GANA) if needed. This will allow a simple
integration of the refund process into the system. C2EC establishes structures
which abstracts the general flow and the integration of new provider is simply
adding new requests within this structures.

20

4 Implementation

The implementation is documented per component (C2EC, terminal, database).
This means that each feature is documented from the perspective of the respec-
tive component in another section.

4.1 C2EC

This section treats the implementation of the C2EC component. C2EC is the core
of the withdrawal using a third party. Besides different API for different client
types such as the terminal, wallet or the Exchange, it must also deal with back-
ground tasks as described in subsection 4.1.3. The component also implements a
framework to extend the application to acceptwithdrawals throughotherproviders
than Wallee. In subsection 4.1.4 the requirements for the integration of other
providers is explained and shown at the example of Wallee.

4.1.1 Endpoints

The diagram in Figure 4.1 shows the perspective of the C2EC component in the
withdrawal flow. The numbers in brackets represent the numbers of the diagram
in Figure 2.3 depicting the process in the architecture chapter at section 2.2. The
requests represented in Figure 4.1 only show the requests of the succesful path.
In case of an error in the process, abort endpoints are implemented as described
per client type.

The implementation of the terminals API canbe found in subsubsection 4.1.2, the
bank integration API is documented in subsubsection 4.1.2 and the wire gateway
API implementation is documented in subsubsection 4.1.2.

21

Figure 4.1: C2EC and its interactions with various components

4.1 C2EC

Decoupling Withdrawal Steps

The concept of publishers and subscribers is used in the implementation. It al-
lows decoupling different steps of the process and allows different steps to be
handled and executed in their own processes. Subscriptions are implemented
using long-polling and listeners for Postgres notifications. Long-polling imitates
subscribers by rescheduling a request after some time and keeping the connec-
tion open until the specified timespan exceeds and the requested component an-
swers the request.

The communication of publishers and subscribers happens through channels or
long-polling. A publisher will publish to a certain channel when a defined state
is reached. The subscriber who listens to this channel will capture the message
sent through the channel by the publisher and start processing it.

Every action leading to a state transition of the withdrawal triggers an event. The
trigger can be a real event trigger like a database trigger or a retry mechanism
which periodically checks for state updates. The applications processes are lis-
tening to those events. Consuming clients such as the wallet or the terminal can
wait to be notified by the API. The notification is achieved by registering the re-
spective events via a long polling request. The long-polling request will thenwait
until the backend is ready to send the response. If the long-poll time exceeds
and the result the consumer is looking for is not available, it must reschedule a
long-poll request.

Following a short list of state transitions and from whom they are triggered and
who awaits them:

▶ From pending to selected

– Description: Registration of the withdrawal operation parameters.

– Triggered by: Wallet

– Awaited by: Terminal

▶ From selected to confirming

– Description: Payment confirmation request sent to the Terminals API
of C2EC.

– Triggered by: Terminal

– Awaited by: Confirmation process

▶ From selected to confirmed

– Description: Payment confirmation successwill send awithdrawal op-
eration status update event.

– Triggered by: Confirmation process

23

4 Implementation

– Awaited by: Consumer wallets (via Bank-Integration-API)

▶ From selected to aborted

– Description: Payment confirmation failure will trigger a retry event.

– Triggered by: Confirmation process

– Awaited by: Retry process

▶ Refunds as transfer requests

– Description: Transfers which represent refunds in C2EC.

– Triggered by: Exchange (using the Wire Gateway API of C2EC)

– Awaited by: Transfer process

4.1.2 Abort Handling

A withdrawal might be aborted through the terminal or the wallet. These cases
are implemented through the respective abort endpoint in the bank-integration
API subsubsection 4.1.2 and terminalsAPI subsubsection 4.1.2. If indoubtwhether
to abort the withdrawal or not, it should be aborted. In case of abortion and fail-
ure cases, the security of themoney is weighted higher than the user-experience.
If the usermust restart the withdrawal in case of a failure in the process, it is less
severe than opening possible security holes by somehow processing the with-
drawal anyway. On the other hand the system must be as stable as possible to
make these error cases very rare. If they occur too often, the customermight not
use the technology and therefore would make it worthless.

The withdrawal can only be aborted, when it is not yet confirmed by the confir-
mation process (described in subsubsection 4.1.3). When the customer wants his
money back they can wait for the reserve to be closed by the Exchange or get in
touch with the operator who might trigger a manual refund. The manual refund
will revert the payment and give the money back to the customer.

24

4.1 C2EC

Terminal API

This section describes the Implementation of the Terminal API [9].

The C2EC Terminals API implements following endpoints:

▶ GET /config

▶ POST /withdrawals

▶ GET /withdrawals/[WOPID]

▶ GET /withdrawals/[WOPID]/check

The C2EC component does not implement the /quotas/* endpoints, since those
arenot relevant for thewithdrawal using apayment terminal. Quotas are checked
by the payment service provider authorizing the payment.

Configuration (/config)

This endpoint returns the configuration for the respective terminal. To support
multi-provider setup, the respective provider is read from the basic-auth creden-
tials subsection 4.4.5. This means that the configuration response will be differ-
ent when requesting the endpoint using a terminal fromprovider A than request-
ing from a terminal of provider B. This configuration also supplies the base fees
of the Exchange operator. These fees shall be communicated to the customer on
the terminal andmust be added to the withdraw amount. These fees are only the
Exchange fees. The payment service provider might want to add their own (see
subsection 4.1.5).

Setting up a withdrawal (/withdrawals)

The setupof awithdrawal generates theWOPIDwhich is a cryptographically sound
32-byte nonce andwill be encoded using the base 32 crockford encoding [21]. The
cryptographical strength is crucial, because otherwise risks as described in sub-
section 4.4.2 can materialise themself.

Terminals are advised to always set the amount field of the request, if they can
define a fixed amount. This will force the Wallet to withdraw this exact amount
and cannot be overwritten by it. The suggested amount field should only be used
when the terminal cannot know howmuchmoney will be withdrawn (such as an
ATM or similar).

Status of withdrawal (/withdrawals/[WOPID])

When the terminal setup the withdrawal successful and received theWOPID, the
terminal wants to wait before effectively authorizing the transaction until the
Wallet has registered the parameters for the withdrawal. This endpoint allows
this and supports long-polling such that the terminalmay directly ask for the sta-
tus after setting up the withdrawal. The endpoint is an exact replication of the

25

4 Implementation

Bank-Integration API status endpoint as described in subsubsection 4.1.2

Trigger Confirmation (/withdrawals/[WOPID]/check)

Once the terminal authorized the transaction at the providers backend and re-
ceived the notification, that the transaction was processed at the providers back-
end, the terminal can trigger the confirmation of the transaction by calling this
endpoint. This is also the point where the terminal can know the fees of the
provider (if any) and send them to the C2EC component. If for some reason it is
not possible to know the fees here, potential fees can also be considered during
the confirmation of the payment (this will lead to bad user-experience subsec-
tion 4.1.5).

Terminal side abort (/withdrawals/[WOPID]/abort)

As long as the withdrawal was not authorized, it can be aborted by the terminal
through this API. If the withdrawal was already authorized, the abort operation
will not work and the refund process must be used to revert the authorized pay-
ment.

Taler Integration (/taler-integration/*)

Under the /taler-integration/ sub-path theBank-IntegrationAPI is reachable. End-
points under this subpath are used by theWallet to register parameters of a with-
drawal and ask for the status of a withdrawal operation. The endpoints of the
Bank-Integration API are described in subsubsection 4.1.2

Taler Integration (/taler-wire-gateway/*)

The sub-path /taler-wire-gateway/ defines the location of the wire-gateway API
used by the Taler Wirewatch component of the Exchange. It is used by the ex-
change to allow creation of withdrawable reserves. Therefore the wire gateway
API was implemented as described in section subsubsection 4.1.2

26

4.1 C2EC

Bank-Integration API

The Bank Integration API was implemented according to the specification [8].

Namely this are the following endpoints:

▶ GET /config

▶ GET /withdrawal-operation/[WOPID]

▶ POST /withdrawal-operation/[WOPID]

▶ POST /withdrawal-operation/[WOPID]/abort

Configuration (/config)

The configuration of the Bank-Integration endpoint is important for Wallets to
check their compatibility and readiness. Also the currency specification can be
retrieved by this endpoint.

Status of withdrawal (/withdrawal-operation/[WOPID])

The /withdrawal-operation/[WOPID] endpoint returns the status of withdrawal op-
eration. The endpoint enables long-polling through request parameters. This
allows clients (the Wallet) to ask the Bank about a status before the status was
reached. C2EC will then simply keep the connection open and either send a re-
spond when a status change was registered or when the long-poll time exceeds.

Registering withdrawal parameters (/withdrawal-operation/[WOPID])

This endpoint is used by the Wallet to register the reserve public key generated
by the Wallet, which will eventually hold the digital cash at the Exchange. This
reserve public key is unique and the API will return a conflict response if a with-
drawal with the reserve public key specified in the request already exists. This is
also the case if a mapping for the givenWOPID was already created.

Abort withdrawal (/withdrawal-operation/[WOPID]/abort)

This endpoint simply allows to abort the withdrawal. This will change the status
of the withdrawal to the aborted state.

27

4 Implementation

Wire-Gateway API

TheWire-Gateway API [7] delivers the transaction history to the exchange which
will create reserves for the specific public keys and therefore allow the customers
to finally withdraw the digital cash using their wallet. Additionally it allows the
Exchange to trigger transfers and keep track of executed transfers.

Following endpoints are implemented by the wire gateway API implementation:

▶ GET /config

▶ GET /history/incoming

▶ POST /transfer

▶ GET /history/outgoing

Configuration (/config)

The wire gateway configuration is used by the Exchange wirewatch component
to check the compatibility of the component. This includes the check of the sup-
ported currency and the version.

Incoming transactions (/history/incoming)

TheC2ECcomponentneeds to return incoming transactionsbyproviders through
the /history/incoming endpoint. This will eventually create the reserve at the Ex-
change and therefore allow the customer to withdraw the digital cash using their
Wallet. The

Transfers (/transfer)

The specification [7] requires the implementor of the API to keep track of incom-
ing transfer requests. In order to guarantee the idempotence of the API, the im-
plementation keeps track of all transfers in the database table transfers. It stores
the transfer data in the database. If a request with the same UID is sent to the
transfer-API, first it is checked that the incoming request is exactly the same as
the previous one by comparing the request to the values stored in the database.
Only if the values are the same, the transfer request is processed further. Other-
wise the API responds with a conflict response. The refund will always make a
full refund. Partial refunds are not supported in the current implementation.

Outgoing transactions (/history/outgoing)

The /history/outgoing endpoint works in the same fashion as the /history/incoming
endpoint. But it will not return a list of confirmedwithdrawals, but rather the list
of successfully executed transfers registered using the /transfer endpoint.

28

4.1 C2EC

4.1.3 Processes

This section describes the different processes running in the background tran-
sitioning the state of a withdrawal. These transitions are triggered because of
requests received by one of the components through the respective API.

Confirmation

The confirmation of a transaction is crucial, since this is the action which allows
the exchange to create a reserve and can proof to the provider and customer, that
the transaction was successful and therefore can put the liability for the money
on theprovider. The confirmationprocess is implementedusing aprovider client
interface and a provider transaction interface. This allows the process to be the
same for each individual provider and new providers can be added by providing
a specific implementation of the interfaces.

Confirmation Retrier

If the confirmation fails, but the transaction is not in the refund state as specified
by the provider’s transaction, the problem could simply be that the service was
not available or the transaction was not yet processed by the provider’s backend.
In order to not need to abort the transaction directly and give the system some
robustness a retry mechanism was implemented. It allows retrying the confir-
mation step. This retry mechanism is run in a separate process started through
the main process.

The retry will only be executed, when the transaction confirmation failed be-
cause the transaction was not in the abort state or if for some reason the transac-
tion information could not have been retrieved.

Transfer Retrier

The Exchange may send a transfer request to the C2EC component, due to the
closing of a reserve or an issue. This will trigger a refund process at the providers
backend. This refundprocessmay fail and therefore like in the confirmation case
to increase the robustness of the system, a retry mechanism is implemented,
which will retry the transfer before ultimatively failing the transfer.

Randomizing delays due to potential self synchronization issues

All processes doing retries use a randomized exponential backoff algorithm for
scheduling the retries. The randomization prevents that the retry processes are
all triggered at the exact same time and could crash the server due to heavy load.
For the implementation ahard coded threshold of 20percent of the targeteddelay
was chosen. The value can be adjusted by changing the constant.

29

4 Implementation

4.1.4 Providers

This section treats the integration of providers into the system by explaining the
generic structures and showing how theywere implemented forWallee. It is also
explained, what must be done in order to integrate other third parties into the
system therefore showing the extensibility of the system.

Provider Client

The provider client interface is called by the confirmation process depending
on the notification received by the database upon receiving a payment notifica-
tion of the provider’s terminal. The specific provider clients are registered at the
startup of the component and the confirmation process will delegate the infor-
mation gathering to the specific client, based on the notification received by the
database.

The provider client interface defines three functions:

1. SetupClient: The setup function is called by the startup of the application
and used to initialize the client. Here it makes sense to check that every-
thingneeded for the specific client is in place and that properties like access
credentials are available.

2. FormatPayto: This function is responsible to create the correct payto URI
given a withdrawal.

3. GetTransaction: This function is used by the confirmation process to re-
trieve the transaction of the provider system. It takes the transaction iden-
tifier supplied with the withdrawal confirmation request and loads the in-
formation about the transaction. Based on this information the decision to
confirm or abort the transaction is done.

4. Refund: Since the transaction of the money itself is done by the provider,
also refunds will be unwind by the provider. This functions mean is to trig-
ger this refund transaction at the provider. Before triggering the transac-
tion, the refunded amount should be checked. The amount must not be
bigger than the withdrawen amount. It can be smaller though, if the Ex-
change makes a partial refund.

Provider Transaction

Since the confirmation process is implemented to support any provider, also the
transaction received by the provider clients GetTransaction function is abstracted
using an interface. This interfacemust be implemented by any provider transac-
tion which belongs to a specific provider client.

30

4.1 C2EC

The provider client interface defines following functions:

1. AllowWithdrawal: This function shall return true, when the transaction re-
ceived by the provider enters a positive final state. This means that the
provider accepted the transaction and could process it. Thismeans that the
Exchange can create the reserve and allow the customer the withdrawal of
the digital cash. This function is responsible to guarantee the finality (sec-
tion 1.3).

2. AbortWithdrawal: It doesn’t mean that if a transaction does not allow to
do the withdrawal, that the transaction shall be cancelled immediately. It
could also be that the transaction was not yet processed by the provider. In
this case a handle to check if the provider transaction is in an abort state.
An abort state is a final state whichwill not change anymore. This indicates
C2EC to stop retrying and abort the withdrawal.

3. Confirm: This function is called during the confirmation and contains busi-
ness specific checks wether to confirm the payment or not. It must be sepa-
rately implemented, because the transaction format varies between differ-
ent payment system providers.

4. Bytes: This function shall return a byte level representation of the trans-
action which will be used as proof of the transaction and stored in the ex-
changes database.

Wallee Client

TheWallee client is the first implementation of the provider client interface and
allows the confirmation of transactions using the Wallee backend system. The
backend ofWallee provides a REST-API to their customers, which allows them to
request information about payments, refunds and so on. To access the API, the
consumer must authenticate themself to Wallee by using their own authentica-
tion token as explained in subsection 4.4.4.

As indicated by the provider client interface, two services of the Wallee backend
are leveraged:

▶ Transaction service: The transaction service aims to provide information
about a transaction registered using a Wallee terminal.

▶ Refund service: The refund service allows to trigger a refund for a given
transaction using the transaction identifier. The refund will then be exe-
cuted by the Wallee backend, back to the Customer.

To integrate Wallee as provider into C2EC, the provider client interface as de-
scribed in subsubsection 4.1.4 was implemented. The transaction received by

31

4 Implementation

Wallee’s transaction service implement the provider transaction interface as de-
scribed in subsubsection 4.1.4.

Simulation Client

Additionally to theWallee Client a Simulation Client was implementedwhich can
be used for testing. It allows end-to-end tests of the C2EC component by stubbing
the actions performed against a provider and returning accurate results.

Adding Providers

Adding anewprovider requires the implementationof the client- and transaction-
interfaces as described in subsubsection 4.1.4 and subsubsection 4.1.4. The SetupClient
function of the client interface must make sure to register itself to the global
map of registered providers (accessible through PROVIDER_CLIENTS). Addition-
ally, to the newly added provider implementation, the provider must also be reg-
istered in the database (section 4.5 describes how this could work). When the
client adds itself to the registered providers clients, the application will load the
provider client at startup of C2EC. If C2EC fails to find the specified provider in
thedatabase, itwon’t start. This behaviourmakes sure, that onlyneededproviders
are running and that if a new provider was added, it is effectively registered and
configured correctly (the setup function of the provider interface is responsible
to check the provider specific configuration and do readiness or liveness checks
if needed). If the new added provider requires a new payto target type, adding a
new entry to the GANA in order to prevent conflicts in the futuremight be a good
idea.

32

4.1 C2EC

4.1.5 Fees

During the implementation it appeared that there are several possible fee mod-
els, when thinking about the general case. Think of buying a bar of chocolate.
From the perspective of getting what you want, you don’t care if you pay 10 CHF
or 10.10 CHF because in the end you get what you want - a bar of chocolate. Using
a payment service provider to withdrawmoney, is special because if you want to
withdraw 10 CHF then you want 10 CHF in your wallet and not 10 CHFminus the
fees. When withdrawing money using the credit card you want the amount in
your wallet you are asking for - not less. The fees must be transparently commu-
nicated to the customer, that they understand why the authorized amount will
be higher than the amount they are asking to withdraw. The fees must be cal-
culated in advance whenever possible. This leads to different models to add up
fees. These four models were discovered:

Model 1 - Exchange Operator Fees

The payment system provider will charge its contractors (the merchants) in the
background and expects the Exchange operator to calculate the fees to cover its
costs. This means that the Exchange operator will specify its fees by approximat-
ing its costs to operate and maintain C2EC. Additionally a certain amount could
be added on top of the calculated fees to make a profit.

Model 2 - Payment Service Provider Fees

The provider advertises the fees beforehand. Thewithdrawing terminal adds the
fees before the transaction and tells them to C2EC. C2EC is not charging fees. In
this case it must be checked during the confirmation that the amount confirmed
is at least as big as the fees advertised to C2EC plus the amount to withdraw.

Model 3 - Payment Service Provider and Exchange Operator Fees

The combination of the first two models. The Exchange operator decides to add
fees to withdrawals and the payment service provider adds fees as well. The im-
plementation must combine the checks of model one and two.

Model 4 - Payment Service Provider "Late Fees"

A payment service provider might add fees but for some reason cannot tell them
to C2EC before authorizing the transaction. In this case the confirmation process
of the payment service provider needs to make sure that the fees are substracted
from the withdrawal amount. Otherwise the Exchange operator must cover the
costs, which will lead to loss of money. This must be prevented. This fee model

33

4 Implementation

must be prevented when possible, because it leads to a bad user-experience. The
amount which can be withdrawn will be lower than the amount authorized.

Mixing models

It could be a problemwhenmixing the different models in one instance of C2EC,
because it could lead to conflicts. For example if a provider using the model one
and a provider using the model two is operated within the same instance this
could lead to more fees for the provider using model 2, since the fees of the Ex-
change operator should not be considered. In the future it might be possible to
handle various fee models in one instance. This would require the implementa-
tion of all models.

34

4.2 Wallee Payment Terminal

4.2 Wallee Payment Terminal

4.2.1 Withdrawal Flow

The process (Figure 4.2) starts by first selecting the Exchange and loading the
configuration from the Terminals-API. When this is successful the terminal app
will navigate to the amount screen. Otherwise the withdrawal is terminated.

On the amount screen the terminal operator enters the amount to withdraw and
clicks on the "withdraw" button. If the operator clicks on the abort button, the
withdrawal is terminated. When the user clicks the "withdraw" button, the ter-
minal sets up the withdrawal at the exchanges terminals api and retrieves the
wopid. When this step is unsuccessful, the withdrawal operation is aborted and
terminated. Otherwise the terminal navigates to the register parameters screen.

In the register parameters screen, aQR code is displayed, whichmust be scanned
by the withdrawer using their wallet app. When the user scanned the QR Code
and the terminal gets the withdrawal operation in state ’selected’ from C2EC, the
wallet has successfully registered its withdrawal parameters. In this case the ter-
minal application changes to the authorization screen in which the withdrawing
person must authorize the transaction using their credit card (or another sup-
ported payment mean). In any other case, the withdrawal operation is aborted
and terminated. When the terminals backend sends the response of the autho-
rization to the terminal, it sends the Terminals API of C2EC the confirmation
request. This will start the confirmation process of the withdrawal immediately.
If the confirmation request is successful, the terminal shows a summary of the
transaction. Otherwise it shows that the transaction was not succesful and the
withdrawal is aborted.

35

Figure 4.2: The flow of the terminal app

4.2 Wallee Payment Terminal

4.2.2 Screens

Theapplication is implementedusing JetpackCompose [22] andeachof the screens
described in subsection 4.2.1 is implemented as composable screen. This allows
to handle the entire withdrawal flow in one single activity and therefore makes
state handling easier. For the summary a standalone activity is used. The state
is bound to the activity and compose will make sure to rebuild the UI if values
change. It also prevents illegal states and that different withdrawals interfere
each other. The state is maintained in a view model as described by Android’s
documentation [23]. The withdrawal activity handles the lifecycle of the view
model instance and initializes the routing of the screens using Android’s naviga-
tion controller as documented [24]. The navigation integration of Android allows
the declarative definition of the in-app routing and is defined at the creation of
the withdrawal activity.

Start Screen

When the app is started there will be two options for the user. The first option is
to start a withdrawal and the second option is to go to the manage screen.

Figure 4.3: Terminal: Start withdrawal or go to manage section

Manage Screen

There are options and special functionalities which can be configured by the ter-
minal operator. These operations are implemented in the manage screen of the
app. The app allows to execute the final balance actions which will settle all au-
thorized transactions of this specific terminal. The test transactionwas used dur-
ing the development to learn how the transaction is triggered. In the newest re-

37

4 Implementation

lease it won’t be part of the manage screen. The operator might want to test the
implementation without having a wallet at hand. This can be done by enabling
the wallet simulation. It will lead to the creation of a mocked reserve public key
which will not be withdrawable by a wallet. Triggering a payment using the wal-
let simulation will lead to temporary loss ofmoney (it will eventually be bounced
and refunded through the Exchange when the reserve is closed). However, the
fees charged will be gone. The wallet simulation should therefore only be used
in a test environment. The last option allows the activation of instant settlement.
This means that the final balance action will be triggered after each payment au-
thorization.

Figure 4.4: Terminal: Manage activities

Choose Exchange Screen

When a new withdrawal is started, the user chooses the exchange to withdraw
from (Figure 4.5). This allows the terminal to support withdrawals from various
exchanges and therefore enhances the flexibility. When the user selected the ex-
change, the configuration of the exchange is loaded. Thiswill define the currency
of the withdrawal and tell the terminal where to reach the Terminals API of the
C2EC server.

38

4.2 Wallee Payment Terminal

Figure 4.5: Terminal: Select the exchange to withdraw from

Amount Screen

The amount screen in Figure 4.6 is used to ask the user what amount they would
like to withdraw. When the amount was entered and the withdraw-button was
clicked, the terminal sets up the withdrawal using the Terminal API. The Ter-
minals API will send the WOPID to the terminal, which allows the terminal to
generate the taler withdraw URI according to [25]. Also the fees are shown to the
customer on this screen and made transparent in advance.

39

4 Implementation

Figure 4.6: Terminal: Enter the desired amount to withdraw

In case the withdrawal amount is invalid, the withdrawal is not possible and an
error shown to the customer as depicted in Figure 4.7.

Figure 4.7: Terminal: Fix the amount

40

4.2 Wallee Payment Terminal

Parameter Registration Screen

After entering the amount, a QR code containing the taler withdraw URI is dis-
played (Figure 4.8). The customers scan it using their Taler wallet app and regis-
ter the parameters for the withdrawal (namely the reserve public key). The with-
drawal can be aborted on the screen. This step is important tomake sure, that the
customerhas aworkingTalerwallet installed andallows them to accept the terms
of service for the respective exchange if they did not yet registered the exchange
on their wallet. Once this is done the authorization can be started by clicking
on the authorize button. When clicking on the abort button the withdrawal is
aborted.

Figure 4.8: Terminal: Register withdrawal parameters

41

4 Implementation

Authorization Screen

The authorization uses the Android Till SDK [14] to authorize the amount at the
Wallee backend. It covers reading and verifiying the payment mean of the cus-
tomer. The response handler of the SDK will delegate the response to the imple-
mentation of the terminal, which allows triggering the confirmation request us-
ing the Terminals API of C2EC.When the authorization process is not started and
the transaction therefore is created at the backend system of Wallee, the screen
Figure 4.9 will be displayed. This signals the user, that the payment authorization
must still be done and is about to be started. The user can abort the transaction
at this point.

Figure 4.9: Terminal: Authorization using the Android Till SDK

42

4.2 Wallee Payment Terminal

Summary Screen

When the transaction was processed a summary of the transaction is displayed
to the customer (Figure 4.10).

Figure 4.10: Terminal: Payment authorized

Failure Screen

To give the customer a feedback when anything goes wrong or when the with-
drawal is aborted, the terminal will always show the rudimentary abort screen
(Figure 4.11). This gives the users feedback what happened. What can go wrong
and how the terminal acts upon these failures is described in subsection 4.2.3.

Figure 4.11: Terminal: Payment authorized

43

4 Implementation

4.2.3 Abort Handling

During the flow various steps can fail or lead to the abort of the withdrawal.
These edge cases must be considered and handled the right way. Generally we
can split the abort handling on the terminal side into two different phases. The
implementation of the Wallee POS Terminal follows a strict abort on failure strat-
egy. This means that if anything goes wrong the withdrawal is aborted and a
new withdrawal might be started. Generally the abort handling strategy is to
abort the withdrawal when in doubt and values security (of the money) over the
user-experience. The idea behind this strategy is that even when a nice user-
experience is implemented, nobody will operate or use a withdrawal process if
security of the money cannot be guaranteed.

Abort before authorization

The first phase are abortions before the payment is authorized. In this case the
withdrawal operation can be aborted using the abort operation described in sub-
subsection 4.1.2. Every problem which cannot be recovered or not further pro-
cessed must lead to the abort of the withdrawal.

Abort after authorization

When the transaction was authorized, the process is a little bit more complex.
The customer has two possibilities. The first one is automatically covered with
the given implementation, while the second is not guaranteed and needsmanual
interaction of the customer with the Taler Exchange operator.

Wait for automatic refund due to closing of the reserve

The Taler Exchange configures a duration for which a reserve is kept open (and
can be withdrawn). When the configured duration exceeds the reserve is closed
autmatically and the money transferred back to the customer. In the case of
Wallee payments, this is realized through a refund request at the provider back-
endupon receiving a transfer request at thewire-gatewayAPI subsubsection 4.1.2
of the C2EC component.

Manual request to refundmoney

Depending on the operator of the Taler Exchange it might be possible to some-
howmanually trigger a refund and get back themoney spent for the withdrawal.

4.2.4 Fulfilling Transactions

To achieve finality and real-time behaviour of the withdrawal flow, the transac-
tion must be forcefully transitioned to the fulfill state in the Wallee backend. For

44

4.2 Wallee Payment Terminal

this reason, the payments are not only authorized but also automatically com-
pleted in the background. After the successful completion, the payment can be
directly settled and with this guarantee the finality property. If the completion
fails, the withdrawal will be aborted. Wallee was asked if the instant settlement
using the final balance call has cost effects for the merchant. It appears that this
is not the case. But Wallee wrote it is not the idea to trigger the final balance
every minute. Because of this, the instant settlement is deactivated by default
and the terminal operator might decide on their own if they want to activate it
or not. Instant settlement can be activated in the manage screen as described in
subsubsection 4.2.2.

45

4 Implementation

4.3 Database

The Database is implemented using Postgresql. This database is also used by
other Taler components and therefore is a good fit.

4.3.1 Schema

For the C2EC component the schema c2ec is created. It holds tables to store the
entities described in subsection 3.1.5. Additionally it contains the table for trans-
fers which is used to capture refunds requested by the Exchange.

Terminal Provider

The terminal provider table holds information about the provider. It contains
the information, which payto target type is used to make transactions by the
provider. This information is needed in the refund casewhere theExchange sends
a transfer request. It also holds information about the confirmation endpoint.
Namely the base url and the credentials to authenticate the confirmation pro-
cess against the API of the providers backend. When adding the provider using
the cli, the credentials are formatted in the correct way and also hashed.

Figure 4.12: Terminal Provider Table

Terminal

Each Terminal must register before withdrawals are possible using the terminal.
Therefore this table holds the information needed for withdrawals. A terminal
can be deactivated by setting the active field accordingly. The terminals are au-
thenticated using an access token generated during the registration process. Like
adding the provider through the cli also the terminal access tokenswill be hashed
using a PBKDF (namely argon2). The terminal is linked through the provider_id as
foreign key to its provider. The description field can hold any information about

46

4.3 Database

the terminal which might be useful to the operator and help identify the device
(location, device identifier, etc.). The operator will be asked for the respective
values, when using the cli for the registration of the terminal.

Figure 4.13: Terminal Table

Withdrawal

Thewithdrawal table is the heart of the application as it captures the information
and state for each withdrawal. besides the obvious fields like amount, wopid, re-
serve_pub_key or terminal_fees (which all are directly related to one of the API calls
described in subsubsection 4.1.2 or subsubsection 4.1.2), the table also holds the
terminal_idwhich identifies the terminal which initiated thewithdrawal. The reg-
istration_ts indicates, when the parameters of a withdrawal were registered. The
field is mainly thought for manual problem analysis and has no direct functional
impact. The withdrawal_status holds the current state of the withdrawal and is
transitioned as described in subsection 3.1.2. The request_uid is a unqiue identi-
fier supplied by the terminal setting up a withdrawal. It is used to support idem-
potence of theAPI. The field confirmed_row_id is used to separate the already con-
firmed withdrawals from the pending or aborted withdrawals. It is leveraged by
the Wire-Gateway API to only handle already successfully confirmed rows. The
existing withdrawal_row_id is not suitable for this case since it is not guaranteed
that withdrawals are confirmed in the same order as they were added. In a fu-
ture version of the application it is a good idea to put the confirmed transactions
in a separate table which would reduce the complexity of the table and its usage.
With this design the application takes care ofwriting the correct confirmed_row_id
when a transasction is confirmed.

47

4 Implementation

Figure 4.14: Withdrawal Table

Transfers

The transfer table is maintained through the transfer endpoint as described in
subsubsection 4.1.2. A transfer in case of C2EC is constrainedwith a refund activ-
ity. The besides the fields indicated by the Wire Gateway API request_uid, row_id,
amount, exchange_base_url, wtid, credit_account and transfer_ts which are all used
to store information about the transfer, the fields transfer_status and retries are
stored which allow retry behavior and help to make the system more robust.
The credit_account is the refund payto URI which allows the refund process to be
provider specific through a custom payto target type. The field transferred_row_id
is used to separate the transferred transactions from the pending or failed trans-
fers. It is leveraged by the Wire-Gateway API to only handle already transferred
rows.

48

4.3 Database

Figure 4.15: Transfer Table

Relationships

The relationships of the tables are created as described in subsubsection 3.1.5.
A withdrawal belongs to a terminal and a terminal belongs to a provider. These
relationships are implemented using foreign keys. The are specified to be non-
null and therefore make sure, the chain of provider, terminal and withdrawal is
always complete. The transfer table is unattached and lives by himself.

Figure 4.16: Relationships of the entities.

49

4 Implementation

4.3.2 Triggers

Triggers are used to decouple the different sub processes in the withdrawal flow
from one another.

The trigger runs a Postgres function which will execute a NOTIFY statement us-
ing Postgres built-in function pg_notify. Listeners in the application will capture
those notifications and process them.

Withdrawal Status Trigger

The withdrawal status trigger emits the status of a withdrawal when the status
is changed or the withdrawal is generated (inserted). The notification is sent
througha channelwhich is namedafter thewithdrawal using theWOPID in base64
encoded format. This allows a listener to specifically be notified about one spe-
cific withdrawal. This feature is used by the long poll feature of the status re-
qeuests described in subsubsection 4.1.2 or subsubsection 4.1.2. By specifically
listening to the withdrawal status to be changed for aWOPID the API can directly
return, when a status change is received through the withdrawals channel.

Payment Trigger

The payment trigger is triggered through the withdrawal confirmation request of
the Terminals API (described in subsubsection 4.1.2). It will start the confirma-
tion of the transaction at the providers backend, through the provider specific
confirmation process.

4.3.3 Migrating The Database

To add new SQL to the project a script can be added to the db directory of the c2ec
directory. Make sure to add the path of the new SQL script to themigration script
named migration.sh. This will execute the migration when using the migration
command as documented in subsection 4.7.4. Additionally the new migration
shall be registered to the versioning schemewhich is installed alongside the c2ec
scheme. For examples how this is done scripts within the db directory can help.

4.4 Security

4.4.1 General Security Considerations

To review and validate the security of the design two cases were reviewed. The
first mirrors the easiest attack (EAV eavesdropping and trying to abuseWOPID).

50

4.4 Security

The second case reviews where the most harm can possibly be done to the sys-
tem.

EAV Abusing WOPID

TheWOPID is used to link a reserve public key to a withdrawal operation. Since
the registration is done through an API, an attacker could try to be first and reg-
ister its own reserve public key before the customer. When theWOPID is some-
how precomputable, an attacker could steal the money by registering their own
reserve public key before the customer. This threat is mitigated by the request
of the wallet resulting in a conflict response code when trying to add a reserve
public key to an already registered withdrawal operation. The customer will see
this error and not authorize the transaction and instead abort the withdrawal.

Further a WOPID can be abused triggering a confirmation or an abort request
at the Terminals API or an abort request at the Bank-Integration API. The con-
firmation or abort from the side of the terminal are mitigated through the au-
thentication of the terminals. When the eavesdropping adversary (EAV) [26] can
somehow access the communication between a terminal and C2EC, the WOPID
cannot be abusedwithout also breaking the terminals credentials. What if the at-
tacker decides to use the unauthenticated Bank-Integration API the wallet would
normally use? The specification does not require some proof that the requester
is the wallet owning the private key of the reserve. This could lead to tamper-
ing of the withdrawals in the time window of the confirmation of the payment.
The problem could be mitigated by sending a signed token in the request (the
request already is a POST request). The wallet could use its reserve private key to
sign the token. The Bank-Integration API could then verify the token using the
reserve public key assigned to the withdrawal operation. It is understandable
that the risk is accepted, since a potential adversary would need to be sophisti-
cated (needs to redirect requests of the wallet and readWOPID from the request).
What about wallets run by people in countries which are politically not as stable
as Switzerland and censorship is a problem? Maybe it’s a good idea to add some
mean of authentication to at least the abort endpoint of the Bank-IntegrationAPI.
On the other hand the attacker needs access to the victims phone anyway and
could possibly also use the keys.

Trying To Withdraw Money Without Paying

This case is possible, when an attacker can trick the C2EC to have confirmed
withdrawals in its withdrawal table, without having a real confirmation of the
payment service provider. This means the attacker can steal money from the ex-
change. For this an attacker would need to have the possibility to somehow trick
the confirmation process of C2EC to issue confirmation requestes against a back-

51

4 Implementation

end controlled by the attacker. This backendwould then confirm thewithdrawal.
This will lead to the creation of the reserve on the side of the Exchange.

Implementation Issues

Another problem could be developers introducing confirmation bugs. The con-
firmation process of a transaction must be considered as the holy grail from the
perspective of the developers. If they do not take biggest care implementing the
confirmationprocess, this could lead to loss ofmoneyon the side of theExchange
operator. The program should strictly disallow withdrawals, if the transaction is
not guaranteed to be final by the payment system provider. Otherwise the prop-
erty of the guarantees concerning the finality is harmed and the systemno longer
secure (in terms of money). When adding new integrations, this section of the
code needs great care and review before going to production.

4.4.2 Withdrawal Operation Identifier (WOPID)

TheWOPID needs great care when generated. When theWOPID becomes some-
how foreseeable, it opens the door for attackers allowing them to hijack the with-
drawal froma remote location or bully the operators by simply aborting anywith-
drawal. Therefore theWOPID needs to leverage high entropy sources to be gen-
erated. This is achieved by using the crypto random library of Go. The library is
part of the standard library and gains entropy through the entropy sources of the
device running the application (in case of linux it is getrandom(2)which takes its
entropy from /dev/urandom, according to the documentation [27]).

4.4.3 Database Security

The database is very important as it decides wether to allow a withdrawal or not
and it manages terminals and providers which hold sensitive credentials. There-
fore two important aspects need to be considered.

Storing Credentials

Even if a database leak occurs, it shall be very hard for the attacker to access
the API using the credentials stored in the database. This is why credentials are
stored using the PBKDF argon2 [28]. Argon2 is the winner of the password hash-
ing competition initiated by the cryptographer Jean-Philippe Aumasson [28]. It
is a widely adopted best practice approach for hashing passwords. Storing the
hash of the credentials makes abusing stolen credentials very hard and there-
fore prevents the abuse of credentials gathered through a database leak. The CLI

52

4.4 Security

described in section 4.5 implements operations whichwill register providers and
terminals also hashing the credentials using argon2.

Access Data Through Correct User

The database user executing a database query must have enough rights to exe-
cute its duties but not more. Therefore different database users are created for
different tasks within the database. The described setup and installation process
in section 4.7 will automatically generate the users and grant them the correct
rights, when the respective variables are specified.

Table 4.1: Database users
Username Component Description
c2ec_admin None This user is possibly never to be used but

during maintenance of the database it-
self (adding database users doing back-
ups adding andgrantingusers or others)

c2ec_api C2EC This user has all rights it needs to man-
age a withdrawal

c2ec_operator CLI This user shall be used by an operator
of the C2EC component to add providers
and terminals. It has no access to with-
drawals

4.4.4 Authenticating At The Wallee REST API

TheWallee API specifies fourWallee specific headers which are used to authenti-
cate against the API. It defines its own authentication standard andflow. The flow
builds on a message authentication code (MAC) which is built on a version, user
identifier, and a timestamp. For the creation of theMAC the hash basedmessage
authentication code (HMAC) SHA-512 is leveraged which takes application-user-
key (which is just an access-token the user receives when creating a new API user
in the management backend of Wallee) as key and the above mentioned prop-
erties plus information about the requested HTTP method and the exactly re-
quested path (including request parameters) as message [29]. The format of the
message is specified like:

Version|User-Id|Unix-Timestamp|HTTP-Method|Path

▶ Version: The version of the algorithm

▶ User-Id: The user-id of the requesting user

▶ Unix-Timestamp: A unix timestamp (seconds since 01.01.1970)

53

4 Implementation

▶ HTTP-Method: one of HEAD, GET, POST, PUT, DELETE, TRACE, CONNECT

▶ Path: The path of the requested URL including the query string (if any)

The resulting string must then be UTF-8 encoded according to RFC-3629 [30].
There are implementations of the mechanism in Java and other languages avail-
able. For Go it was implemented during the thesis.

Wallee User Access rights

In order for Wallee to successfully authorize the user’s requests, the API user
must have the corret access rights. The C2EC Wallee API user must be able to
access the transaction service for reading transactions and the refund service to
write create refunds at the Wallee backend. Therefore following rigths must be
assigned to the API user:

1. Refund-service

2. Transaction-Service

These rights can be assigned on Wallee’s management interface by creating a
role and assigning the rights to it. The role must then be added to the API user.
The assignment of the roles must be done for the space context (Three different
contexts are available. The relevant context is the space context, since requests
are scoped to a space).

4.4.5 API Access

Terminals API

The terminal API is accessed by terminals and the authentication mechanism is
based on a basic auth scheme as specified by RFC-7617 [10] an specified in the
terminals API specification [9]. Therefore a generated access-token used as pass-
word and a username which is generated registering the terminal using the cli
explained in subsection 4.4.6 are leveraged. Currently the terminal id and the
provider name of the requesting terminal is included in the username part of the
basic auth scheme.

Bank-Integration API

The Bank-Integration API is accessed by Wallets and specified to be unauthenti-
cated.

Wire-Gateway API

The wire gateway specifies a basic authentication scheme [31] as described in
RFC-7617 [10]. Therefore the C2EC component allows the configuration of a user-

54

4.5 C2EC CLI

name and password for the exchange. During the request of the exchange at the
wire gateway API, the credentials are checked.

4.4.6 Registering Providers And Terminals

A provider may want to register a new Terminal or maybe even a new provider
shall be registered for the exchange. To make this step easier for the exchange
operators, a simple cli program (command line interface) was implemented (sec-
tion 4.5). The cli will either ask for a password or generate an access token in case
of the terminal registration. The credentials are stored has hashes using a PBKDF
(password based key derivation function) so that even if the database leaks, the
credentials cannot be easily read by an attacker.

4.4.7 Hijacking And Stealing Terminals

A Terminal can be stolen, hijacked or hacked by malicious actors. Therefore it
must be possible to disable a terminal immediately and no longer allow with-
drawals using this terminal. Therefore the active flag can be set to false for a reg-
istered terminal. The Terminals-API which processes withdrawals and authen-
ticates terminals, checks that the requesting terminal is active and is allowed to
initiate withdrawals. Since the check for the active flag must be done for each
request of a terminal, the check can be centralized and is implemented as part
of the authentication flow. A Wallee terminal can be deactivated using the cli
described in section 4.5.

4.5 C2EC CLI

The management of providers and terminals is not part of the thesis but since
writing and issueing SQL statements is cumbersome and error-prone a small cli
was implemented to abstract managment tasks. The cli tool was also shows the
concepts a future implementation of the provider managment can use to inte-
grate with the present features. The cli can be extended with more actions to
allow the management of other providers and its terminals. Also the cli allows
to setup the simulation terminal and provider which can be used for testing. Be-
fore commands can be executed, the user must connect the tool to the database
which can be done throught the db command or by starting the cli with the -c
option with the path to the .ini config file containing the connection string. With
the aim to not introduce security risks by storing configuration state of the cli, the
credentialsmust be entered after each startup of the cli. This can be surpassed by
specifying postgres specific environment variables PGHOST, PGPORT, PGUSER and
PGPASSWORD but remember that these environment variablesmight leak database
credentials to others if not cleaned properly or set for the wrong users shell.

55

4 Implementation

The cli was implemented to be usable and as it was out of scope of the thesis,
the focus was on the functionality and tasks needed for the thesis and to allow a
simple management of the terminals. This included features to manage wallee
provider and terminals and the simulation. Additionally the tool implements
commands to activate and deactivate a terminal, whichmakes the taskmuch eas-
ier than writing and executing SQL by hand.

4.5.1 Adding Wallee Provider

Adding the Wallee provider can be achieved calling rp (register-provider). It will
then ask for properties like the base url and the credentials of the API user (gen-
erated by Wallee). Since the payto target type in case of Wallee will always be
wallee-transaction, this is hard coded. The credentials supplied are hashed us-
ing argon2 [32]. If the database leaks for some reason, the passwords cannot be
abused easily.

4.5.2 Adding Wallee Terminal

Adding aWallee terminal can be achieved by using the rt (register-terminal) com-
mand. It will ask the user to enter the description of the terminal and will then
generate a 32-byte access token using Go’s crypto random library which must be
supplied to the owner of the terminal through a secure channelwith the terminal-
user-id (which is just the nameof the operator and the id of the terminal separated
by a dash ’-’)

4.5.3 Deactivating Terminals

To deactivate the terminal, the command dt must be issued. It will ask for the
terminal-user-id of the terminal and then deactivate the specified terminal. The
deactivation will be immediately and therefore helps to increase the security by
allowing immediate action,whena terminal is come tobeknwonhijacked, stolen
or other fraud is detected specific to the terminal. To detect suspicious activity
in production appropriate montioring tools could be installed to automatically
trigger alarms.

4.5.4 Setting Up The Simulation

The Simulation provider and terminal allow to simulate transactions and inter-
actions of the terminal with the API of C2EC. Therefore the command sim will
setup the needed provider and terminal including the credentials of the simula-
tion terminal, whichmust be saved and supplied to the operator through a secure
channel. These credentials allow to test the Terminals API using the simulation

56

4.6 Testing

terminal. The simulation client will not be available in productive environments
to reduce the attack surface due to unnecessaty features.

4.6 Testing

Since the program leverages concurrency and parallizes work a simulation client
and simulation program was implemented. The simulation allows to test the
C2EC component while simulating the different involved parties like the termi-
nal, wallet and the providers backend system. This setup allows to test and proof
the functionality of the core. The Simulation can be used for regression testing
and therefore can be run before introducing new features in order to check, that
existing functionality will not be broken. The simulation can be configured with
the specified configuration format. An example configuration can be found in
the simulation source directory of the C2EC repository.

Besides the automated tests, using the above mentioned simulation, unit tests
were implemented for parsing, formatting and encoding functions. Addition-
ally manual test were fulfilled to ensure the system behaves correctly. To test
the wire-gateway API, the taler-exchange-wire-gateway-client [33] facility was used
supplied by GNU Taler to verify the correct functioning of the API.

In the end to approve the process, manual tests were executed. During this phase
a few bugs were discovered which were not known before. After resolving them
the systemwas ready to issue digital cash to the customer. During this phase tests
were made with various means of payment: credit card, debit card, apple wallet
(credit card). Also the withdrawal was tested using the IOS and Android version
of the Taler wallet. Both platforms are working as expected.

4.6.1 Wallee Test System

The testsystem of Wallee has some behavioral specialities. The system will pro-
cess payments based on the amount. After a short conversion with Wallee it was
learned that following amounts will lead to approved payments:

3.00 - Approved

4.00 - Approved

5.00 - Approved

6.00 - Approved

7.00 - Approved

8.00 - Approved

9.00 - Approved

57

4 Implementation

It appears that also other amounts will be approved but they were not listed by
Wallee. The amounts in the list above are guaranteed to be approved.

4.7 Deployment

4.7.1 Preparation

For the deployment the it is recommended to use a Debian Linux machine. To
prepare the deployment of C2EC following steps must be done:

1. Machine which has bash, go and postgres installed must be prepared.

2. Three different passwords (each must be different, stored in a secure loca-
tion, like a password manager for example)

3. For the setup the username and password of postgresql superuser must be
known.

4. The name for the database must be known and the database must exist at
the target database system.

5. The installation location of C2EC must be created

6. The setup script in the root directory of cashless2cash must be altered with
the values mentioned above.

7. Set the postgres variables PGHOST and PGPORT to the correct values if needed

For the deployment of the Wallee payment terminal app, the following steps are
necessary to prepare the usage of the cashless withdrawals leveraging Wallee:

1. A running deployment of C2EC must be accessible.

2. Wallee must be a registered provider at the C2EC instance.

3. The terminal must be registered at C2EC.

4.7.2 Setup

Once the steps from the preparation were succesfully done, the setup-script can
now be run. It will initiate the database and setup the users (as described in sub-
subsection 4.4.3) with the correct permissions. It will further generate the ex-
ecutables for C2EC, the cli and the simulation inside the specified C2EC_HOME.
The setup script contains sensitive credentials and shall be deleted after using it.
Maybe it can be stored in a save location like a password manager. Like this it
will be still available in the future but will not lie around on the filesystem.

58

4.7 Deployment

Setting Up Wallee As Provider

To allow withdrawals using Wallee as provider, the correct access tokens must
be created at theWallee backend. Therefore a new application user must be cre-
ated and the application user key must be saved to a password manager. Then
Wallee must be registered at C2EC using the cli (described in section 4.5) and
the rp command. There the space-id, the user-id of the application user and the
application-user-key must be provided. The cli will register the provider using
these values.

Registering Wallee Terminal

When Wallee was registered as provider, one must register a terminal to allow
access to the Taler Terminals API of C2EC. Therefore also the cli with its rt com-
mand can be used. It will generate the terminal user id and the access token.
Both these values should be stored in a save location like the password manager

Setting Up The Terminal

To setup theWallee terminal, the Android appmust be configured and built with
the credentials gained by the terminal registration process described in subsub-
section 4.7.2.

Setting Up The Simulation

When the simulation shall be installed the prod-flag in the C2EC configuration
should be disabled, in order to allow the simulation provider to be registered at
startup. This is a security measure, that testing facilities are not reachable in
productive use of the system.

4.7.3 Deploy

When the provider and the terminal was successfully registered, the configura-
tion located inside the C2EC_HOME must be adjusted to the correct values. Once
this is done, theC2ECprocess canbe startedusing ./c2ec -c [PATH-TO-CONFIGFILE].

The terminal appmust be deployed by theWallee support. The Android package
(APK)will be installed over the air by themonce theAPKwas accepted and signed
by them. To get a signed APK, it must be sent to info@wallee.com. They will first
check and sign the APK. After this step another message must be sent to them
with a link to the signed APK. With this request the information of the terminal
to install the application on must be given. Wallee will then rollout the app on
the specified device.

59

4 Implementation

Making C2EC Accessible Via Internet

To make the C2EC instance available a web-server must be configured to receive
requests and hand them to the C2EC instance. The exact configurationwill not be
covered within this thesis. The test installation uses a NGINX reverse proxy [34]
to allow the access over the internet. A rudimentary configuration is enough to
allow the access. It helps to set big timeouts since a lot of long-polling is done.
To not undermine this, NGINX should not terminate the connection before the
long-poll time exceeds. Setting big values for timeouts will be a good practice for
C2EC.On the other hand clients should not run long running requests (more than
aminute or two) against C2EC and instead leverage retries to extend the time they
wait for a response. A value between 30 and 60 seconds might be a good choice
for long-polling requests (These values are also used by the wallet and the wire
watch process of the Exchange). Using too long values for long-pollings can result
in less robust systems due to timeout problems.

4.7.4 Migration And Releases

When a new version of the system shall be installed, the new executable can be
built by issueing make build from the sources root directory. After migrating
the database using make migrate the newly built executable can be started. For
new versions of the cli and the installation make cli and make simulation can
be used.

60

5 Results

5.1 Discussion

This thesis shows that withdrawals in GNU Taler are possible using the payment
service provider Wallee. The implementation displays how the objectives of fi-
nality, user-experience and security can be achieved. The C2EC implementation
also achieves the integration into the rest of the Taler ecosystem and gives a ref-
erence on how this can be achieved.

The design of the Terminals API was a major field of work during the process.
Only after several iterations, the specificationwas ready. The iterationswere nec-
essary to sharpen the understanding of how the terminal and C2EC must inter-
act and integrate with the existing Taler components in order to make the with-
drawals functional. At first the existing Bank-Integration API was copied and
extended before merging the copy with the existing Bank-Integration API. Af-
ter this step I extracted terminal specific endpoints to the new Terminals API.
Like this the separation of terminal and wallet specific functionality could have
been achieved. The current implementation keeps changes to the existing Bank-
Integration API low and therefore allow the integration of the wallet without fur-
ther changes.

The implementationof the existingBank-IntegrationandWire-GatewayAPIwere
a challenge because they must be implemented with great care to not violate the
specification. Another challenging task was the design of C2EC. Making C2EC a
useful, robust and extensible, required the understaning of details of Taler such
as byte encodings or amount handling. This task was a little more time consum-
ing than initially planned. At first, I assumed that C2EC would just be imple-
mented and work. This was a bit optimistic. In reality the process was iterative.
Only after a lot of iterations a suitable way for the implementation was found.

A challenge which was encountered during the implementation of the termi-
nal application and the C2EC component, was the concurrency of processes. To
make the withdrawal flow as easy and useful as possible, a lot of tasks need to be
covered in the background and run besides each other. This added the technical
requirement to decouple steps and leverage retries to increase the robustness of
the process. It helped a lot to understand that the state of a withdrawal was the
anchor these retry mechanisms must be built around.

Fees are a central aspect of the process and decide wether the implementation

61

5 Results

can be used or not. The different feemodels of subsection 4.1.5 describe how fees
can add up during a withdrawal. The current implementation does not cover all
fee models, because fee models two to four also depend on the payment system
provider used for a specific withdrawal. The checks that C2EC can make to se-
cure its own fees are implemented. Fee model one seems to be the most secure
and easy to implement fee model. It can be covered by the core implementation
of C2EC and does not rely on the payment system provider specific implementa-
tion. Using other fee models requires great care during the integration and adds
complexity. For the thesis, model onewas implemented becauseWallee uses this
model. Thesemodels also resolve the discussion of themidtermmeetingwithDr.
Alain Hiltgen.

Towards the end of the implementation it became obvious that a simple autho-
rization of the payment was not enough to imitate the real time feeling of the
withdrawal. Other requests were necessary to do so. To findout which requests
needed to be filed against theWallee backend some investigation had to bemade.
Thedocumentationdoes explainwhich states exists inWallee’s transaction scheme
but does not explain, which operationmust be triggered to transition states. This
made the investigation somewhat cumbersome. Also the integration of the back-
end needed more investigation than assumed. This also led to the

Thenewcashless approach towithdrawdigital cashmakes a faster uptake ofGNU
Taler possible. Potential customers will only need a supported payment mean to
withdraw digital cash. They can now use C2EC and the terminal app for Wallee
to withdraw digital cash using GNU Taler.

5.2 Limitations And Future Work

Due to the short time available during the thesis, features and integrations are
missing which can make C2EC even more valuable. Because of this I provide a
list of future work. Maybe there are other students or collaborators who want to
join in and add their features to the existing code. The list might not be complete
and any new ideas are appreciated. I splitted the list into the list of extensions
and improvements. The improvements list also shows some limitations of the
implementation done during the thesis.

5.2.1 Extensions

1. Integration of other providers: Tomake use of the implemented structures,
it would be nice to add more payment service providers.

2. Management interface for terminals: To allow easier use of the system it
might be nice to have a more sophisticated interface to manage terminals.

62

5.2 Limitations And Future Work

The implemented cli helps to get an understanding, how such a manage-
ment interface can add terminals to the system.

3. Automated registration: With increasing use of C2EC, it might be nice for
the operator to allow an automatic registration of new terminals.

4. Support quotas: To fully support the Terminals API, the quotas endpoints
can be implemented.

5. Proper packing: To fully integrate into the Taler landscape, C2EC should be
packed and installed like other Taler components such as the Exchange.

5.2.2 Improvements

1. Paydroid app: Run a Wallee terminal on behalf of the BFH.

2. Paydroid app: The app must be released including the credentials. This is
a security risk since these credentials are shipped through (secure?) chan-
nels. A way to register to an exchange in the app is a nice extension.

3. C2EC: Remove doubled provider structures. Currently providers are saved
to the database and must be configured in the configuration. To make the
setup and management easier, the providers can only be configured inside
the configuration.

4. C2EC: Proper separation of confirmed and unconfirmed withdrawals and
transferred and untransferred refunds to reduce complexity of the imple-
mentation.

5. C2EC: Only one provider per instance is allowed to use the same payto
target-type. Currently an additional instance must be configured, if two or
more payment service providers are using the same payto target type.

6. Implementmore feemodels: To alloweasier integration of other providers,
the described fee models can be centralized in one location. This would
help to improve the quality and robustness of the system.

7. Database locking: Currently no database locking is used. This can lead to
race conditions. To completely prevent this locks can be applied.

8. IPv6 support: The process must also listen on IPv6 addresses.

9. Support cli without interaction. The cli currently is purely interactive. It
would be a nice improvement if the cli would be usable without interactio.
This would allow to use the cli for automated tasks.

10. Partial refunds: The current implementation only allows refunds of the en-
tire withdrawal amount. In the future the implementation can support par-
tial refunds.

63

5 Results

5.3 Conclusion

5.3.1 Technically

Generally, I think the implementation does its job very well. I was able to imple-
ment the required processes and the targeted user-experience. The implemen-
tation (in C2EC as well as in the Paydroid app) suffers of some technical debts
(listed in subsection 5.2.2). I finally accepted them, because I had to prioritize
the formal parts of the thesis, such as the poster, video, book entry or this docu-
mentation. I could have prevented some of these issues, if I would have read the
documentation and specification more carefully. But overall I am satisfied with
the work I did concerning the short time span that was available for the imple-
mentation.

C2EC

The implementation of C2EC was the biggest part of my work during the thesis.
It is the core of the framework and I had to think about API specification confor-
mance, extensibility, correctness and database integration. I wanted to achieve
an architecture, which is similar to the one of the GNU Taler Exchange. This inl-
cuded to decouple steps in the withdrawal process using triggers and the notify
feature of postgres. I learned a lot about how postgres works and how I can write
working postgres functions and triggers. First, I failed to properly document the
database fields, tables and functions. After a review with Prof. Dr. Christian
Grothoff, I learned about the comment functionality of the postgres SQL stan-
dard.

In Go code of the C2EC component I had to implement a robust way to communi-
cate between parallel running processes. The Go concurrency model made this
possible in an straight forward andwhat I think, comprehensible way. I correctly
anticipated that it would pay out to first implement the concepts for my require-
ments in a dummy project and then adapt them to C2EC. Additionally, the imple-
mentation of the database access layer behind an interface allows to change the
database without changing the entire application.

Concerning the extensibility of C2EC I was able to implement code level abstrac-
tionswhichallowan seemless integrationof additional payment systemproviders.
After the feedback of Prof. Dr. Christian Grothoff I was able to eliminate an un-
necessary layer of abstraction, which made it even easier.

I think I have been able to apply a lot of the knowledge I have gained over the last
three years. From time to time I thought: "ah, this is why the professor told us
this". This helped me to deepen my understanding of topics like encoding, REST
API, concurrency and many more.

64

5.3 Conclusion

Paydroid Terminal Application

The paydroid application was challenging to me since I never wrote a real An-
droid application on my own. That is why I think I did a good job by implement-
ing a best practice structure with the view models, composable and navigation
controller. Thanks to the feedback of Prof. Dr. Benjamin Fehrensen, I was able
to improve the design and verify the correctness of these best practices.

I first had problems to understand how exactly the versioning in Android works.
Thebackward compatibility is given evenwhenbig timegaps between the feature
needed and the version in use occur. In the beginning I suffered to understand
the difference of the none compose and compose era of Android programming
andmixed the patterns. After better understanding how features work in jetpack
compose I think I implemented a modern Android app.

Since the app needs to do requests in the background I had to understand how
this could be achieved. Therefore, I needed to understand how I can access other
threads. I think in this area is the biggest shortcoming of my implementation. I
implemented an asynchronous state-handling. Threads running detached from
the UI-Thread will update the model, which will lead to the regeneration of the
composables. I think it would be a better way to implement a the asynchronous
tasks using Androids state flow features. Due to the lack of time I decided to not
do this anymore.

It was interesting to learn about the difference of Go goroutines andKotlin corou-
tines. While running background tasks using goroutines works perfectly fine, in
Kotlin on Android I learnt it is required to start a new thread and launch corou-
tines on the new thread. Otherwise Android will not allow network requests,
because it disallows I/O operations on its UI thread. From my point of view this
shows a limitation of coroutines on top of JVM threads. They are not real parallel
but just suspend work on the thread and check periodically if they can process
further. If there are thread level restrictions (like the Android restrictions), they
will affect the execution of the coroutines on top and like this undermine the
concept of coroutines.

5.3.2 Methodically

To organize the work I did a rough planning of the work and the artefacts in the
beginning. On top of this plan I did a weekly iterative planning of the work I
wanted to do. This plan was presented through the weekly meeting with Prof.
Dr. Christian Grothoff and Prof. Dr. Benjamin Fehrensen. Sometimes the plan
needed to be sligthly adjusted due to their feedback. This led to the organiza-
tion of doing my planning at Thursday night so I could plan my work and adjust
the plan after our weekly meeting at Wednesday morning. I think I could have
made the process a bit more transparent but in the end I was able to deliver the

65

5 Results

artefacts and deliverables on time. Sometimes I lost focus because there were so
much loose ends to keep up with. I then did something different and orderedmy
thoughts. This helped sometimes but not always. When the stress levelwas rising
this was evenmore difficult. In such situations taking a step back and prioritzing
the work helped me.

5.3.3 Personally

The world of payment systems seems a bit chaotic to me. I think this is the result
of a lot of different approaches for the same problemdeveloped at the same time.
Standards exist but they mainly suggest things and do not enforce them. The
technical documentation is obfuscated in big documents with a lot of boiler plate
text. Thismakes it very hard to act appropriatelywithout finding out by handhow
a process works exactly. For example to bring aWallee transaction into the fulfill
state (which allows the shipping of goods) you must settle the transaction and
execeute the final balance. The documentation does not care about this. I had to
write e-mails with Wallee to finally understand this. Even the people of Wallee
messed up their own transaction states.

The thesiswas constrainedwith a lot of insecurities forme. Howdoes the process
look? How can I implement the process? How does GNU Taler even work? How
does Wallee work? In the end I am proud of what I accomplished during the
thesis. I was able to understand the different API and write a program which
fulfills the properties needed for the withdrawal. Additionally I could learn a lot
about designing an API and especially parallelization in Go and Android.

I am thankful that the Bern University of Applied Sciences supports free soft-
ware projects like GNU Taler. It was a great opportunity for me as student and as
human to gain direct insights and work on a GNU project during my thesis. I re-
member Prof. Dr. Christian Grothoff telling me during an onsite session: "Nicht
so kurzfristig denken!" (do not think short-term). This also showed the horizon of
the project to me. It tries to sustainably change the payment landscape for good.
That is what I like the most about free software. It is built to last. The world will
not get better when we keep pushing towards short-term profit benefiting indi-
viduals, global warming and war. GNU Taler and other GNU projects are making
a difference and take a humanitarian perspective on technology. Providing tech-
nology supporting humans. This was the reason I startedmy journey in computer
science with my apprenticeship in 2015 and eventually decided to do my thesis
on GNU Taler. It has not changed since. Even when my contribution is small I
believe it is important. When everyone adds their ideas and work to the plate, we
can achieve a better world. The title picture, generously provided by cartoonist
Bruno Fauser [35], visualizes this attitude. Sometimes it is hard to not loose faith
for the good, but; the good wins. Always.

66

Declaration of Authorship

I hereby declare that I have written this thesis independently and have not used
any sources or aids other than those acknowledged.

All statements taken from other writings, either literally or in essence, have been
marked as such.

I hereby agree that the present work may be reviewed in electronic form using
appropriate software.

June 11, 2024
J. Häberli

67

Bibliography

[1] Fabio Panetta. A digital euro that serves the needs of the public: striking the
right balance. https://www.ecb.europa.eu/press/key/date/2022/html/
ecb.sp220330_1~f9fa9a6137.en.html, March 2022. Accessed: 2024-06-10.

[2] on behalf of ECB Kantar Public (Verian since November 2023). Study on new
digital payment methods. https://www.ecb.europa.eu/euro/digital_
euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_
report.en.pdf, March 2022. Accessed: 2024-06-10.

[3] GLS Bank. Taler - die zukunft des digitalen, sicheren und nachhaltigen
bezahlens. https://www.gls.de/privatkunden/taler. Accessed: 2024-06-
10.

[4] NGI TALER. Ngi taler. https://taler.net/en/ngi-taler.html. Accessed:
2024-06-10.

[5] Wallee. Payment connectors. https://app-wallee.com/connectors. Ac-
cessed: 2024-06-10.

[6] Taler. Withdrawal. https://docs.taler.net/taler-wallet.html#
withdrawal. Accessed: 2024-06-10.

[7] Taler. Taler wire gateway http api. https://docs.taler.net/core/
api-bank-wire.html. Accessed: 2024-06-10.

[8] Taler. Taler bank integration api. https://docs.taler.net/core/
api-bank-integration.html. Accessed: 2024-06-10.

[9] Taler. Terminal api. https://docs.taler.net/core/api-terminal.html.
Accessed: 2024-06-10.

[10] Julian Reschke. The ’Basic’ HTTPAuthentication Scheme. RFC 7617, Septem-
ber 2015.

[11] Sven Crefeld. Supermärkte zahlen immermehr geld an kunden aus. Zeit, 04
2024.

[12] PCI Security Standards Council. Pci data security standard.
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/
PCI-DSS-v4_0.pdf. Accessed: 2024-06-10.

69

https://www.ecb.europa.eu/press/key/date/2022/html/ecb.sp220330_1~f9fa9a6137.en.html
https://www.ecb.europa.eu/press/key/date/2022/html/ecb.sp220330_1~f9fa9a6137.en.html
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://www.ecb.europa.eu/euro/digital_euro/investigation/profuse/shared/files/dedocs/ecb.dedocs220330_report.en.pdf
https://www.gls.de/privatkunden/taler
https://taler.net/en/ngi-taler.html
https://app-wallee.com/connectors
https://docs.taler.net/taler-wallet.html#withdrawal
https://docs.taler.net/taler-wallet.html#withdrawal
https://docs.taler.net/core/api-bank-wire.html
https://docs.taler.net/core/api-bank-wire.html
https://docs.taler.net/core/api-bank-integration.html
https://docs.taler.net/core/api-bank-integration.html
https://docs.taler.net/core/api-terminal.html
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf

Bibliography

[13] Wallee. Transaction states. https://app-wallee.com/de-de/doc/payment.
Accessed: 2024-06-10.

[14] Wallee. Android till sdk. https://github.com/wallee-payment/
android-till-sdk. Accessed: 2024-06-10.

[15] Wallee. Transaction service. https://app-wallee.com/de-de/doc/api/
web-service#transaction-service. Accessed: 2024-06-10.

[16] Wallee. Refund service. https://app-wallee.com/de-de/doc/api/
web-service#refund-service. Accessed: 2024-06-10.

[17] Wallee. Transaction states. https://app-wallee.com/de-de/doc/payment/
transaction-process. Accessed: 2024-06-10.

[18] Florian Dold and Christian Grothoff. The ’payto’ URI Scheme for Payments.
RFC 8905, October 2020.

[19] Tim Berners-Lee, Roy T. Fielding, and Larry MMasinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, January 2005.

[20] GNUnet Project. The gnunet assigned numbers authority (gana). https:
//gana.gnunet.org/. Accessed: 2024-06-10.

[21] Douglas Crockford. Base 32. https://www.crockford.com/base32.html.
Accessed: 2024-06-10.

[22] Developer-Android. Build better apps faster with jetpack compose. https:
//developer.android.com/develop/ui/compose. Accessed: 2024-06-10.

[23] Developer-Android. Viewmodel overview. https://developer.android.
com/topic/libraries/architecture/viewmodel. Accessed: 2024-06-10.

[24] Developer-Android. Navigation. https://developer.android.com/guide/
navigation. Accessed: 2024-06-10.

[25] Christian Grothoff and Florian Dold. The ’taler’ URI scheme for GNU Taler
Wallet interactions. Internet-Draft draft-grothoff-taler-01, Internet Engi-
neering Task Force, November 2022. Work in Progress.

[26] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &Hal-
l/CRC Cryptography and Network Security Series. CRC Press, 2020.

[27] Golang Doc. rand. https://pkg.go.dev/crypto/rand. Accessed: 2024-06-
10.

[28] Jean-Philippe Aumasson. Password hashing competition. https://www.
password-hashing.net. Accessed: 2024-06-10.

[29] Wallee. Authentication. https://app-wallee.com/en-us/doc/api/
web-service#_authentication. Accessed: 2024-06-10.

70

https://app-wallee.com/de-de/doc/payment
https://github.com/wallee-payment/android-till-sdk
https://github.com/wallee-payment/android-till-sdk
https://app-wallee.com/de-de/doc/api/web-service#transaction-service
https://app-wallee.com/de-de/doc/api/web-service#transaction-service
https://app-wallee.com/de-de/doc/api/web-service#refund-service
https://app-wallee.com/de-de/doc/api/web-service#refund-service
https://app-wallee.com/de-de/doc/payment/transaction-process
https://app-wallee.com/de-de/doc/payment/transaction-process
https://gana.gnunet.org/
https://gana.gnunet.org/
https://www.crockford.com/base32.html
https://developer.android.com/develop/ui/compose
https://developer.android.com/develop/ui/compose
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/guide/navigation
https://developer.android.com/guide/navigation
https://pkg.go.dev/crypto/rand
https://www.password-hashing.net
https://www.password-hashing.net
https://app-wallee.com/en-us/doc/api/web-service#_authentication
https://app-wallee.com/en-us/doc/api/web-service#_authentication

Bibliography

[30] François Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629,
November 2003.

[31] Taler. Taler wire gateway http api. https://docs.taler.net/core/
api-bank-wire.html#authentication. Accessed: 2024-06-10.

[32] Alex Biryukov, Daniel Dinu, Dmitry Khovratovich, and Simon Josefsson. Ar-
gon2 Memory-Hard Function for Password Hashing and Proof-of-Work Ap-
plications. RFC 9106, September 2021.

[33] Taler. taler-exchange-wire-gateway-client. https://docs.taler.net/
manpages/taler-exchange-wire-gateway-client.1.html. Accessed:
2024-06-10.

[34] NGINX. Nginx reverse proxy. https://docs.nginx.com/nginx/
admin-guide/web-server/reverse-proxy/. Accessed: 2024-06-10.

[35] Bruno Fauser. Träumen von einer besseren Welt. Cartoonist Bruno Fauser,
Hinterkappelen, fauser.ch, 2023.

71

https://docs.taler.net/core/api-bank-wire.html#authentication
https://docs.taler.net/core/api-bank-wire.html#authentication
https://docs.taler.net/manpages/taler-exchange-wire-gateway-client.1.html
https://docs.taler.net/manpages/taler-exchange-wire-gateway-client.1.html
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

List of Figures

2.1 Involved components and devices 5
2.2 Diagram of included components and their interactions 6
2.3 Process of a withdrawal using a credit card 8

3.1 Withdrawal Operation state transition diagram 14
3.2 Relationships of the entities. 17

4.1 C2EC and its interactions with various components 22
4.2 The flow of the terminal app . 36
4.3 Terminal: Start withdrawal or go to manage section 37
4.4 Terminal: Manage activities . 38
4.5 Terminal: Select the exchange to withdraw from 39
4.6 Terminal: Enter the desired amount to withdraw 40
4.7 Terminal: Fix the amount . 40
4.8 Terminal: Register withdrawal parameters 41
4.9 Terminal: Authorization using the Android Till SDK 42
4.10 Terminal: Payment authorized . 43
4.11 Terminal: Payment authorized . 43
4.12 Terminal Provider Table . 46
4.13 Terminal Table . 47
4.14 Withdrawal Table . 48
4.15 Transfer Table . 49
4.16 Relationships of the entities. 49

1 The project plan . 96

73

List of Tables

4.1 Database users . 53

75

Appendix A

77

1.11.7.	Terminal	API
Table	of	Contents

Introduction
Authentication
Config
Endpoints	for	Integrated	Sub-APIs

1.11.7.1.	Introduction
Terminals	are	devices	where	users	can	withdraw	digital	cash.

This	API	is	offered	by	a	payment	service	backend	and	is	used	by	such	terminals.	It
enables	imposing	limits	on	withdrawals	per	unique	user	ID	(and	communicating	such
limits	to	the	terminals)	as	well	as	setting	up	and	triggering	withdrawal	operations.

Implementations	of	this	API	typically	interact	with	a	terminal-specific	payment	service
(or	a	bank)	to	realize	the	service.

1.11.7.2.	Authentication
Terminals	must	authenticate	against	all	terminal	API	using	basic	auth	according	to	HTTP
basic	auth.

1.11.7.3.	Config
GET	/config

Return	the	protocol	version	and	configuration	information	about	the	bank.	This
specification	corresponds	to	current	protocol	being	version	0.

Response:

200	OK:
Response	is	a	TerminalConfig.

Details:

interface	TerminalConfig	{
		//	Name	of	the	API.
		name:	"taler-terminal";

		//	libtool-style	representation	of	the	Bank	protocol	version,	see
		//	
https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versionin
g
		//	The	format	is	"current:revision:age".
		version:	string;

		//	Terminal	provider	display	name	to	be	used	in	user	interfaces.
		provider_name:	string;

		//	The	currency	supported	by	this	Terminal-API
		//	must	be	the	same	as	the	currency	specified
		//	in	the	currency	field	of	the	wire	gateway	config
		currency:	string;

		//	The	withdrawal	fees	which	of	this	Terminals	API	endpoint.
		//	If	the	Exchange	chooses	to	charge	no	fees,	then	just	configure
		//	the	zero	amount.
		withdrawal_fees:	Amount;

		//	Wire	transfer	type	supported	by	the	terminal.
		//	FIXME:	needed?
		wire_type:	string;
}

GET	/quotas/$UUID

Obtain	the	current	transaction	limit	for	the	given	$UUID.	The	UUID	should	be	an
encoding	of	a	unique	identifier	of	the	user.

Response:

200	OK:
Response	is	a	WithdrawLimit.

Details:

interface	WithdrawLimit	{
		//	Maximum	amount	that	can	be	withdrawn	now.
		limit:	Amount;

		//	Time	when	the	limit	may	increase.
		expiration:	Timestamp;
}

POST	/quotas/$UUID/lock

This	endpoint	allows	a	terminal	to	reserve	a	given	amount	from	the	user’s	quota,
ensuring	that	a	subsequent	operation	will	not	fail	due	to	a	quota	violation.

Request:

The	request	should	be	a	WithdrawLimitLock.

Response:

204	No	content:
The	change	was	accepted.

409	Conflict:
The	proposed	lock	would	push	the	user	above	the	limit.

Details:

interface	WithdrawLimitLock	{

		//	Amount	that	should	be	reserved	from	the	quota.
		limit:	Amount;

		//	ID	for	the	lock.		FIXME:	could	also	be	32-byte	nonce?
		lock:	string;

		//	How	long	should	the	lock	be	held?
		expiration:	Timestamp;
}

DELETE	/quotas/$UUID/lock/$LOCK

This	endpoint	allows	the	terminal	to	clear	a	lock	it	may	have	previously	created.

Response:

204	No	content:
The	lock	was	cleared.

404	Not	found:
The	lock	is	unknown.

409	Conflict:
The	lock	was	already	used	in	a	withdrawal	operation.

POST	/withdrawals

This	endpoint	allows	the	terminal	to	set	up	a	new	withdrawal	operation.

Request:

The	request	should	be	a	TerminalWithdrawalSetup.

Response:

200	Ok:
The	operation	was	created.	The	response	will	be	a
TerminalWithdrawalSetupResponse.

404	Not	found:
A	lock	was	specified	but	the	lock	is	not	known	for	the	given	user.

409	Conflict:
A	conflicting	withdrawal	operation	already	exists	or	the	amount	would	violate	the
quota	for	the	specified	user.

Details:

interface	TerminalWithdrawalSetup	{

		//	Amount	to	withdraw.		If	given,	the	wallet
		//	cannot	change	the	amount!
		amount?:	Amount;

		//	Suggested	amount	to	withdraw.	If	given,	the	wallet	can
		//	still	change	the	suggestion.
		suggested_amount?:	Amount;

		//	A	provider-specific	transaction	identifier.
		//	This	identifier	may	be	used	to	attest	the
		//	payment	at	the	provider's	backend.	Optional,
		//	as	we	may	not	know	it	at	this	time.
		provider_transaction_id?:	string;

		//	The	non-Taler	fees	the	customer	will	have
		//	to	pay	to	the	service	provider
		//	they	are	using	to	make	this	withdrawal.
		//	If	the	fees	cannot	be	precalculated,
		//	they	can	be	specified	in	the	/withdrawals/$WITHDRAWAL_ID/check
		//	request	after	the	transaction	was	executed.
		terminal_fees?:	Amount;

		//	Unique	request	ID	to	make	retried	requests	idempotent.
		request_uid:	string;

		//	Unique	user	ID	of	the	user.		Optional
		//	in	case	a	user	Id	is	not	(yet)	known.
		user_uuid?:	string;

		//	ID	identifying	a	lock	on	the	quota	that	the	client
		//	may	wish	to	use	in	this	operation.		May	only	be
		//	present	if	user_uuid	is	also	given.
		lock?:	string;
}

interface	TerminalWithdrawalSetupResponse	{

		//	ID	identifying	the	withdrawal	operation	being	created.
		withdrawal_id:	string;
}

POST	/withdrawals/$WITHDRAWAL_ID/check

Endpoint	for	providers	to	notify	the	terminal	backend	about	a	payment	having
happened.	This	will	cause	the	bank	to	validate	the	transaction	and	allow	the
withdrawal	to	proceed.	The	API	is	idempotent,	meaning	sending	a	payment
notification	for	the	same	WITHDRAWAL_ID	return	successfuly	but	not	change	anything.
This	endpoint	is	always	optional:	the	bank,	exchange	and	wallet	should	all	eventually
notice	the	wire	transfer	with	or	without	this	endpoint	being	called.	However,	by
calling	this	endpoint	checks	that	might	otherwise	only	happen	periodically	can	be
triggered	immediately.

The	endpoint	may	also	be	used	to	associate	a	user	ID	at	a	very	late	stage	with	the
withdrawal	—	and	still	get	an	immediate	failure	if	we	are	above	the	quota.

The	backend	shall	never	just	accept	this	claim	that	the	payment	was
confirmed,	but	instead	needs	to	internally	attest	that	the	payment	was
successful	using	provider-specific	transaction	validation	logic!	The	point	of
this	endpoint	is	merely	to	trigger	this	validation	now.

Request:

The	body	of	the	request	must	be	a	TerminalWithdrawalConfirmationRequest.

Note

Response:

204	No	content:
The	payment	notification	was	processed	successfully.

404	Not	found:
The	withdrawal	operation	was	not	found.

409	Conflict:
The	withdrawal	operation	has	been	previously	aborted	and	cannot	be	confirmed
anymore.

451	Unavailable	for	Legal	Reasons:
The	withdrawal	operation	cannot	be	confirmed	because	it	would	put	the	user
above	the	legal	limit.	The	payment	service	will	eventually	bounce	the	transfer	(if
it	were	to	become	effective),	but	the	user	should	already	be	shown	an	error.

Details:

interface	TerminalWithdrawalConfirmationRequest	{

		//	A	provider-specific	transaction	identifier.
		//	This	identifier	may	be	used	to	facilitate	the
		//	backend	to	check	that	the	credit	was	confirmed.
		provider_transaction_id?:	string;

		//	The	fees	which	the	customer	had	to	pay	to	the
		//	provider
		terminal_fees?:	Amount;

		//	A	user-specific	identifier	for	quota	checks.
		user_uuid?:	string;

		//	ID	identifying	a	lock	on	the	quota	that	the	client
		//	may	wish	to	use	in	this	operation.		May	only	be
		//	present	if	user_uuid	is	also	given.
		lock?:	string;
}

GET	/withdrawals/$WITHDRAWAL_ID

Query	information	about	a	withdrawal,	identified	by	the	WITHDRAWAL_ID.

Request:

Query	Parameters:
long_poll_ms	–	Optional.	If	specified,	the	bank	will	wait	up	to	long_poll_ms
milliseconds	for	operationt	state	to	be	different	from	old_state	before	sending
the	HTTP	response.	A	client	must	never	rely	on	this	behavior,	as	the	bank	may
return	a	response	immediately.
old_state	–	Optional.	Default	to	“pending”.

Response:

200	OK:
The	withdrawal	operation	is	known	to	the	bank,	and	details	are	given	in	the
BankWithdrawalOperationStatus	response	body.

404	Not	found:
The	operation	was	not	found.

DELETE	/withdrawals/$WITHDRAWAL_ID/abort

Aborts	WITHDRAWAL_ID	operation.	Has	no	effect	on	an	already	aborted	operation.	This
endpoint	can	be	used	by	the	terminal	if	the	terminal	aborts	the	transaction,	ensuring
that	the	operation	is	also	aborted	at	the	bank.

Request:

©	Copyright	2014-2024	Taler	Systems	SA	(GPLv3+	or	GFDL	1.3+).

Previous
1.11.6.	Taler	Conversion
Info	API

Next
1.12.	The	Donau	RESTful

API

The	request	body	is	empty.

Response:

204	No	content:
The	withdrawal	operation	has	been	aborted.

404	Not	found:
The	withdrawal	operation	was	not	found.

409	Conflict:
The	withdrawal	operation	has	been	confirmed	previously	and	can’t	be	aborted.

1.11.7.4.	Endpoints	for	Integrated	Sub-APIs
ANY	/taler-integration/*

All	endpoints	under	this	prefix	are	specified	by	the.	GNU	Taler	bank	integration	API.
This	API	handles	the	communication	with	Taler	wallets.

ANY	/taler-wire-gateway/*

All	endpoints	under	this	prefix	are	specified	by	the	GNU	Taler	wire	gateway	API.

The	endpoints	are	only	available	for	accounts	configured	with
is_taler_exchange=true.

1.11.5.	Taler	Bank	Integration	API
This	chapter	describe	the	APIs	that	banks	need	to	offer	towards	Taler	wallets	to	tightly
integrate	with	GNU	Taler.

Table	of	Contents

Taler	Bank	Integration	API
Withdrawing

GET	/config

Return	the	protocol	version	and	configuration	information	about	the	bank.	This
specification	corresponds	to	current	protocol	being	v2.

Response:

200	OK:
The	exchange	responds	with	a	IntegrationConfig	object.	This	request	should
virtually	always	be	successful.

Details:

interface	IntegrationConfig	{
		//	Name	of	the	API.
		name:	"taler-bank-integration";

		//	libtool-style	representation	of	the	Bank	protocol	version,	see
		//	
https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versionin
g

		//	The	format	is	"current:revision:age".
		version:	string;

		//	URN	of	the	implementation	(needed	to	interpret	'revision'	in	version).
		//	@since	v2,	may	become	mandatory	in	the	future.
		implementation?:	string;

		//	Currency	used	by	this	bank.
		currency:	string;

		//	How	the	bank	SPA	should	render	this	currency.
		currency_specification:	CurrencySpecification;
}

1.11.5.1.	Withdrawing
Withdrawals	with	a	Taler-integrated	bank	are	based	on	withdrawal	operations.	Some
user	interaction	(on	the	bank’s	websitei)	creates	a	withdrawal	operation	record	in	the
bank’s	database.	The	wallet	can	use	a	unique	identifier	for	the	withdrawal	operation	(the
WITHDRAWAL_ID)	to	interact	with	the	withdrawal	operation.

GET	/withdrawal-operation/$WITHDRAWAL_ID

Query	information	about	a	withdrawal	operation,	identified	by	the	WITHDRAWAL_ID.

Request:

Query	Parameters:

long_poll_ms	–	Optional.	If	specified,	the	bank	will	wait	up	to	long_poll_ms
milliseconds	for	operationt	state	to	be	different	from	old_state	before	sending
the	HTTP	response.	A	client	must	never	rely	on	this	behavior,	as	the	bank	may
return	a	response	immediately.
old_state	–	Optional.	Default	to	“pending”.

Response:

200	OK:
The	withdrawal	operation	is	known	to	the	bank,	and	details	are	given	in	the
BankWithdrawalOperationStatus	response	body.

404	Not	found:
The	operation	was	not	found.

Details:

interface	BankWithdrawalOperationStatus	{
		//	Current	status	of	the	operation
		//	pending:	the	operation	is	pending	parameters	selection	(exchange	and	
reserve	public	key)
		//	selected:	the	operations	has	been	selected	and	is	pending	confirmation
		//	aborted:	the	operation	has	been	aborted
		//	confirmed:	the	transfer	has	been	confirmed	and	registered	by	the	bank
		//	@since	**v1**
		status:	"pending"	|	"selected"	|	"aborted"	|	"confirmed";

		//	Currency	used	for	the	withdrawal.
		//	MUST	be	present	when	amount	is	absent.
		//	@since	v2,	may	become	mandatory	in	the	future.
		currency?:	string;

		//	Amount	that	will	be	withdrawn	with	this	operation
		//	(raw	amount	without	fee	considerations).		Only
		//	given	once	the	amount	is	fixed	and	cannot	be	changed.
		//	Optional	since	**vC2EC**.
		amount?:	Amount;

		//	Suggestion	for	the	amount	to	be	withdrawn	with	this
		//	operation.		Given	if	a	suggestion	was	made	but	the
		//	user	may	still	change	the	amount.
		//	Optional	since	**vC2EC**.
		suggested_amount?:	Amount;

		//	Maximum	amount	that	the	wallet	can	choose	to	withdraw.
		//	Only	applicable	when	the	amount	is	not	fixed.
		//	@since	**vC2EC**.
		max_amount?:	Amount;

		//	The	non-Taler	card	fees	the	customer	will	have
		//	to	pay	to	the	bank	/	payment	service	provider
		//	they	are	using	to	make	the	withdrawal.
		//	@since	**vC2EC**
		card_fees?:	Amount;

		//	Bank	account	of	the	customer	that	is	debiting,	as	an
		//	RFC	8905	payto	URI.
		sender_wire?:	string;

		//	Base	URL	of	the	suggested	exchange.		The	bank	may	have
		//	neither	a	suggestion	nor	a	requirement	for	the	exchange.
		//	This	value	is	typically	set	in	the	bank's	configuration.
		suggested_exchange?:	string;

		//	Base	URL	of	an	exchange	that	must	be	used.		Optional,
		//	not	given	*unless*	a	particular	exchange	is	mandatory.
		//	This	value	is	typically	set	in	the	bank's	configuration.
		//	@since	**vC2EC**
		required_exchange?:	string;

		//	URL	that	the	user	needs	to	navigate	to	in	order	to
		//	complete	some	final	confirmation	(e.g.	2FA).
		//	Only	applicable	when	status	is	selected	or	pending.
		//	It	may	contain	the	withdrawal	operation	id.
		confirm_transfer_url?:	string;

		//	Wire	transfer	types	supported	by	the	bank.

		wire_types:	string[];

		//	Reserve	public	key	selected	by	the	exchange,
		//	only	non-null	if	status	is	selected	or	confirmed.
		//	@since	**v1**
		selected_reserve_pub?:	EddsaPublicKey;

		//	Exchange	account	selected	by	the	wallet;
		//	only	non-null	if	status	is	selected	or	confirmed.
		//	@since	**v1**
		selected_exchange_account?:	string;

		//	@deprecated	since	**v1**,	use	status	instead
		//	Indicates	whether	the	withdrawal	was	aborted.
		aborted:	boolean;

		//	@deprecated	since	**v1**,	use	status	instead
		//	Has	the	wallet	selected	parameters	for	the	withdrawal	operation
		//	(exchange	and	reserve	public	key)	and	successfully	sent	it
		//	to	the	bank?
		selection_done:	boolean;

		//	@deprecated	since	**v1**,	use	status	instead
		//	The	transfer	has	been	confirmed	and	registered	by	the	bank.
		//	Does	not	guarantee	that	the	funds	have	arrived	at	the	exchange	already.
		transfer_done:	boolean;
}

POST	/withdrawal-operation/$WITHDRAWAL_ID

This	endpoint	is	used	by	the	GNU	Taler	wallet	to	supply	additional	details	needed	to
complete	a	withdraw	operation.

Request:

interface	BankWithdrawalOperationPostRequest	{

		//	Reserve	public	key	that	should	become	the	wire	transfer
		//	subject	to	fund	the	withdrawal.
		reserve_pub:	EddsaPublicKey;

		//	RFC	8905	(payto)	address	of	the	exchange	account	to	be
		//	credited	for	the	withdrawal.
		selected_exchange:	string;

		//	Selected	amount	to	be	transferred.	Optional	if	the
		//	backend	already	knows	the	amount.
		//	@since	**vC2EC**
		amount?:	Amount;
}

Response:

200	OK:
The	bank	has	accepted	the	withdrawal	operation	parameters	chosen	by	the
wallet.	The	response	is	a	BankWithdrawalOperationPostResponse.

404	Not	found:
The	bank	does	not	know	about	a	withdrawal	operation	with	the	specified
WITHDRAWAL_ID.

409	Conflict:
TALER_EC_BANK_WITHDRAWAL_OPERATION_RESERVE_SELECTION_CONFLICT:	The	wallet
selected	a	different	exchange	or	reserve	public	key	under	the	same
withdrawal	ID.
TALER_EC_BANK_DUPLICATE_RESERVE_PUB_SUBJECT:	the	reserve	public	key	is
already	used.
TALER_EC_BANK_UNKNOWN_ACCOUNT:	the	selected	exchange	account	was	not
found.
TALER_EC_BANK_ACCOUNT_IS_NOT_EXCHANGE:	the	selected	account	is	not	an
exchange.

©	Copyright	2014-2024	Taler	Systems	SA	(GPLv3+	or	GFDL	1.3+).

Previous
1.11.4.	Taler	Bank
Revenue	HTTP	API

Next
1.11.6.	Taler	Conversion

Info	API

TALER_EC_BANK_AMOUNT_DIFFERS	:	the	specified	amount	will	not	work	for	this
withdrawal	(since	vC2EC).
TALER_EC_BANK_AMOUNT_REQUIRED	:	the	backend	requires	an	amount	to	be
specified	(since	vC2EC).

Details:

interface	BankWithdrawalOperationPostResponse	{
		//	Current	status	of	the	operation
		//	pending:	the	operation	is	pending	parameters	selection	(exchange	and	
reserve	public	key)
		//	selected:	the	operations	has	been	selected	and	is	pending	confirmation
		//	aborted:	the	operation	has	been	aborted
		//	confirmed:	the	transfer	has	been	confirmed	and	registered	by	the	bank
		status:	"selected"	|	"aborted"	|	"confirmed";

		//	URL	that	the	user	needs	to	navigate	to	in	order	to
		//	complete	some	final	confirmation	(e.g.	2FA).
		//
		//	Only	applicable	when	status	is	selected	or	pending.
		//	It	may	contain	withdrawal	operation	id
		confirm_transfer_url?:	string;

		//	@deprecated	since	**v1**,	use	status	instead
		//	The	transfer	has	been	confirmed	and	registered	by	the	bank.
		//	Does	not	guarantee	that	the	funds	have	arrived	at	the	exchange	already.
		transfer_done:	boolean;
}

POST	/withdrawal-operation/$WITHDRAWAL_ID/abort

Aborts	WITHDRAWAL_ID	operation.	Has	no	effect	on	an	already	aborted	operation.	This
endpoint	can	be	used	by	the	wallet	if	the	user	aborts	the	transaction,	ensuring	that
the	operation	is	also	aborted	at	the	bank.

Since	protocol	v2.

Request:

The	request	body	is	empty.

Response:

204	No	content:
The	withdrawal	operation	has	been	aborted.

404	Not	found:
The	withdrawal	operation	was	not	found.

409	Conflict:
The	withdrawal	operation	has	been	confirmed	previously	and	can’t	be	aborted.

1.11.3.	Taler	Wire	Gateway	HTTP	API
This	section	describes	the	API	offered	by	the	Taler	wire	gateway.	The	API	is	used	by	the
exchange	to	trigger	transactions	and	query	incoming	transactions,	as	well	as	by	the
auditor	to	query	incoming	and	outgoing	transactions.

This	API	is	currently	implemented	by	the	Taler	Demo	Bank,	as	well	as	by	LibEuFin	(work
in	progress).

GET	/config

Return	the	protocol	version	and	configuration	information	about	the	bank.	This
specification	corresponds	to	current	protocol	being	version	0.

Response:

200	OK:
The	exchange	responds	with	a	WireConfig	object.	This	request	should	virtually
always	be	successful.

Details:

interface	WireConfig	{
		//	Name	of	the	API.
		name:	"taler-wire-gateway";

		//	libtool-style	representation	of	the	Bank	protocol	version,	see
		//	
https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versionin
g
		//	The	format	is	"current:revision:age".
		version:	string;

		//	Currency	used	by	this	gateway.
		currency:	string;

		//	URN	of	the	implementation	(needed	to	interpret	'revision'	in	version).
		//	@since	v0,	may	become	mandatory	in	the	future.
		implementation?:	string;
}

1.11.3.1.	Authentication
The	bank	library	authenticates	requests	to	the	wire	gateway	via	HTTP	basic	auth.

1.11.3.2.	Making	Transactions
POST	/transfer

This	API	allows	the	exchange	to	make	a	transaction,	typically	to	a	merchant.	The
bank	account	of	the	exchange	is	not	included	in	the	request,	but	instead	derived
from	the	user	name	in	the	authentication	header	and/or	the	request	base	URL.

To	make	the	API	idempotent,	the	client	must	include	a	nonce.	Requests	with	the
same	nonce	are	rejected	unless	the	request	is	the	same.

Request:

interface	TransferRequest	{
		//	Nonce	to	make	the	request	idempotent.		Requests	with	the	same
		//	request_uid	that	differ	in	any	of	the	other	fields
		//	are	rejected.
		request_uid:	HashCode;

		//	Amount	to	transfer.
		amount:	Amount;

		//	Base	URL	of	the	exchange.		Shall	be	included	by	the	bank	gateway
		//	in	the	appropriate	section	of	the	wire	transfer	details.
		exchange_base_url:	string;

		//	Wire	transfer	identifier	chosen	by	the	exchange,
		//	used	by	the	merchant	to	identify	the	Taler	order(s)
		//	associated	with	this	wire	transfer.
		wtid:	ShortHashCode;

		//	The	recipient's	account	identifier	as	a	payto	URI.
		credit_account:	string;
}

Response:

200	OK:
The	request	has	been	correctly	handled,	so	the	funds	have	been	transferred	to
the	recipient’s	account.	The	body	is	a	TransferResponse.

400	Bad	request:
Request	malformed.	The	bank	replies	with	an	ErrorDetail	object.

401	Unauthorized:
Authentication	failed,	likely	the	credentials	are	wrong.

404	Not	found:
The	endpoint	is	wrong	or	the	user	name	is	unknown.	The	bank	replies	with	an
ErrorDetail	object.

409	Conflict:
A	transaction	with	the	same	request_uid	but	different	transaction	details	has	been
submitted	before.

Details:

interface	TransferResponse	{
		//	Timestamp	that	indicates	when	the	wire	transfer	will	be	executed.
		//	In	cases	where	the	wire	transfer	gateway	is	unable	to	know	when
		//	the	wire	transfer	will	be	executed,	the	time	at	which	the	request
		//	has	been	received	and	stored	will	be	returned.
		//	The	purpose	of	this	field	is	for	debugging	(humans	trying	to	find
		//	the	transaction)	as	well	as	for	taxation	(determining	which
		//	time	period	a	transaction	belongs	to).
		timestamp:	Timestamp;

		//	Opaque	ID	of	the	wire	transfer	initiation	performed	by	the	bank.
		//	It	is	different	from	the	/history	endpoints	row_id.
		row_id:	SafeUint64;
}

1.11.3.3.	Querying	the	transaction	history
GET	/history/incoming

Return	a	list	of	transactions	made	from	or	to	the	exchange.

Incoming	transactions	must	contain	a	valid	reserve	public	key.	If	a	bank	transaction
does	not	conform	to	the	right	syntax,	the	wire	gateway	must	not	report	it	to	the
exchange,	and	send	funds	back	to	the	sender	if	possible.

The	bank	account	of	the	exchange	is	determined	via	the	base	URL	and/or	the	user
name	in	the	Authorization	header.	In	fact	the	transaction	history	might	come	from	a
“virtual”	account,	where	multiple	real	bank	accounts	are	merged	into	one	history.

Transactions	are	identified	by	an	opaque	numeric	identifier,	referred	to	here	as	row
ID.	The	semantics	of	the	row	ID	(including	its	sorting	order)	are	determined	by	the
bank	server	and	completely	opaque	to	the	client.

The	list	of	returned	transactions	is	determined	by	a	row	ID	starting	point	and	a
signed	non-zero	integer	delta:

If	delta	is	positive,	return	a	list	of	up	to	delta	transactions	(all	matching	the	filter
criteria)	strictly	after	the	starting	point.	The	transactions	are	sorted	in
ascending	order	of	the	row	ID.
If	delta	is	negative,	return	a	list	of	up	to	-delta	transactions	(all	matching	the
filter	criteria)	strictly	before	the	starting	point.	The	transactions	are	sorted	in
descending	order	of	the	row	ID.

If	starting	point	is	not	explicitly	given,	it	defaults	to:

A	value	that	is	smaller	than	all	other	row	IDs	if	delta	is	positive.
A	value	that	is	larger	than	all	other	row	IDs	if	delta	is	negative.

Request:

Query	Parameters:
start	–	Optional.	Row	identifier	to	explicitly	set	the	starting	point	of	the	query.
delta	–	The	delta	value	that	determines	the	range	of	the	query.
long_poll_ms	–	Optional.	If	this	parameter	is	specified	and	the	result	of	the
query	would	be	empty,	the	bank	will	wait	up	to	long_poll_ms	milliseconds	for
new	transactions	that	match	the	query	to	arrive	and	only	then	send	the	HTTP
response.	A	client	must	never	rely	on	this	behavior,	as	the	bank	may	return	a
response	immediately	or	after	waiting	only	a	fraction	of	long_poll_ms.

Response:

200	OK:
JSON	object	of	type	IncomingHistory.

204	No	content:
There	are	not	transactions	to	report	(under	the	given	filter).

400	Bad	request:
Request	malformed.	The	bank	replies	with	an	ErrorDetail	object.

401	Unauthorized:
Authentication	failed,	likely	the	credentials	are	wrong.

404	Not	found:
The	endpoint	is	wrong	or	the	user	name	is	unknown.	The	bank	replies	with	an
ErrorDetail	object.

Details:

interface	IncomingHistory	{
		//	Array	of	incoming	transactions.
		incoming_transactions	:	IncomingBankTransaction[];

		//	Payto	URI	to	identify	the	receiver	of	funds.
		//	This	must	be	one	of	the	exchange's	bank	accounts.
		//	Credit	account	is	shared	by	all	incoming	transactions
		//	as	per	the	nature	of	the	request.
		credit_account:	string;

}

//	Union	discriminated	by	the	"type"	field.
type	IncomingBankTransaction	=
|	IncomingReserveTransaction
|	IncomingWadTransaction;

interface	IncomingReserveTransaction	{
		type:	"RESERVE";

		//	Opaque	identifier	of	the	returned	record.
		row_id:	SafeUint64;

		//	Date	of	the	transaction.
		date:	Timestamp;

		//	Amount	transferred.
		amount:	Amount;

		//	Payto	URI	to	identify	the	sender	of	funds.
		debit_account:	string;

		//	The	reserve	public	key	extracted	from	the	transaction	details.
		reserve_pub:	EddsaPublicKey;

}

interface	IncomingWadTransaction	{
		type:	"WAD";

		//	Opaque	identifier	of	the	returned	record.
		row_id:	SafeUint64;

		//	Date	of	the	transaction.
		date:	Timestamp;

		//	Amount	transferred.
		amount:	Amount;

		//	Payto	URI	to	identify	the	receiver	of	funds.
		//	This	must	be	one	of	the	exchange's	bank	accounts.
		credit_account:	string;

		//	Payto	URI	to	identify	the	sender	of	funds.
		debit_account:	string;

		//	Base	URL	of	the	exchange	that	originated	the	wad.
		origin_exchange_url:	string;

		//	The	reserve	public	key	extracted	from	the	transaction	details.
		wad_id:	WadId;
}

GET	/history/outgoing

Return	a	list	of	transactions	made	by	the	exchange,	typically	to	a	merchant.

The	bank	account	of	the	exchange	is	determined	via	the	base	URL	and/or	the	user
name	in	the	Authorization	header.	In	fact	the	transaction	history	might	come	from	a
“virtual”	account,	where	multiple	real	bank	accounts	are	merged	into	one	history.

Transactions	are	identified	by	an	opaque	integer,	referred	to	here	as	row	ID.	The
semantics	of	the	row	ID	(including	its	sorting	order)	are	determined	by	the	bank
server	and	completely	opaque	to	the	client.

The	list	of	returned	transactions	is	determined	by	a	row	ID	starting	point	and	a
signed	non-zero	integer	delta:

If	delta	is	positive,	return	a	list	of	up	to	delta	transactions	(all	matching	the	filter
criteria)	strictly	after	the	starting	point.	The	transactions	are	sorted	in
ascending	order	of	the	row	ID.
If	delta	is	negative,	return	a	list	of	up	to	-delta	transactions	(all	matching	the
filter	criteria)	strictly	before	the	starting	point.	The	transactions	are	sorted	in
descending	order	of	the	row	ID.

If	starting	point	is	not	explicitly	given,	it	defaults	to:

A	value	that	is	smaller	than	all	other	row	IDs	if	delta	is	positive.
A	value	that	is	larger	than	all	other	row	IDs	if	delta	is	negative.

Request:

Query	Parameters:
start	–	Optional.	Row	identifier	to	explicitly	set	the	starting	point	of	the	query.
delta	–	The	delta	value	that	determines	the	range	of	the	query.
long_poll_ms	–	Optional.	If	this	parameter	is	specified	and	the	result	of	the
query	would	be	empty,	the	bank	will	wait	up	to	long_poll_ms	milliseconds	for
new	transactions	that	match	the	query	to	arrive	and	only	then	send	the	HTTP
response.	A	client	must	never	rely	on	this	behavior,	as	the	bank	may	return	a
response	immediately	or	after	waiting	only	a	fraction	of	long_poll_ms.

Response:

200	OK:
JSON	object	of	type	OutgoingHistory.

204	No	content:
There	are	not	transactions	to	report	(under	the	given	filter).

400	Bad	request:
Request	malformed.	The	bank	replies	with	an	ErrorDetail	object.

401	Unauthorized:
Authentication	failed,	likely	the	credentials	are	wrong.

404	Not	found:
The	endpoint	is	wrong	or	the	user	name	is	unknown.	The	bank	replies	with	an
ErrorDetail	object.

Details:

interface	OutgoingHistory	{
		//	Array	of	outgoing	transactions.
		outgoing_transactions	:	OutgoingBankTransaction[];

		//	Payto	URI	to	identify	the	sender	of	funds.
		//	This	must	be	one	of	the	exchange's	bank	accounts.
		//	Credit	account	is	shared	by	all	incoming	transactions
		//	as	per	the	nature	of	the	request.
		debit_account:	string;

}

interface	OutgoingBankTransaction	{
		//	Opaque	identifier	of	the	returned	record.
		row_id:	SafeUint64;

		//	Date	of	the	transaction.
		date:	Timestamp;

		//	Amount	transferred.
		amount:	Amount;

		//	Payto	URI	to	identify	the	receiver	of	funds.
		credit_account:	string;

		//	The	wire	transfer	ID	in	the	outgoing	transaction.
		wtid:	ShortHashCode;

		//	Base	URL	of	the	exchange.
		exchange_base_url:	string;
}

1.11.3.4.	Wire	Transfer	Test	APIs
Endpoints	in	this	section	are	only	used	for	integration	tests	and	never	exposed	by	bank
gateways	in	production.

POST	/admin/add-incoming

Simulate	a	transfer	from	a	customer	to	the	exchange.	This	API	is	not	idempotent
since	it’s	only	used	in	testing.

Request:

interface	AddIncomingRequest	{
		//	Amount	to	transfer.
		amount:	Amount;

		//	Reserve	public	key	that	is	included	in	the	wire	transfer	details
		//	to	identify	the	reserve	that	is	being	topped	up.
		reserve_pub:	EddsaPublicKey;

		//	Account	(as	payto	URI)	that	makes	the	wire	transfer	to	the	exchange.
		//	Usually	this	account	must	be	created	by	the	test	harness	before	this	API	
is
		//	used.		An	exception	is	the	"exchange-fakebank",	where	any	debit	account	
can	be
		//	specified,	as	it	is	automatically	created.
		debit_account:	string;
}

Response:

200	OK:
The	request	has	been	correctly	handled,	so	the	funds	have	been	transferred	to
the	recipient’s	account.	The	body	is	a	AddIncomingResponse.

400	Bad	request:
The	request	is	malformed.	The	bank	replies	with	an	ErrorDetail	object.

401	Unauthorized:
Authentication	failed,	likely	the	credentials	are	wrong.

404	Not	found:
The	endpoint	is	wrong	or	the	user	name	is	unknown.	The	bank	replies	with	an
ErrorDetail	object.

409	Conflict:
The	‘reserve_pub’	argument	was	used	previously	in	another	transfer,	and	the
specification	mandates	that	reserve	public	keys	must	not	be	reused.

©	Copyright	2014-2024	Taler	Systems	SA	(GPLv3+	or	GFDL	1.3+).

Previous
1.11.2.	Taler	Core	Bank
API

Next
1.11.4.	Taler	Bank
Revenue	HTTP	API

Details:

interface	AddIncomingResponse	{
		//	Timestamp	that	indicates	when	the	wire	transfer	will	be	executed.
		//	In	cases	where	the	wire	transfer	gateway	is	unable	to	know	when
		//	the	wire	transfer	will	be	executed,	the	time	at	which	the	request
		//	has	been	received	and	stored	will	be	returned.
		//	The	purpose	of	this	field	is	for	debugging	(humans	trying	to	find
		//	the	transaction)	as	well	as	for	taxation	(determining	which
		//	time	period	a	transaction	belongs	to).
		timestamp:	Timestamp;

		//	Opaque	ID	of	the	wire	transfer	initiation	performed	by	the	bank.
		//	It	is	different	from	the	/history	endpoints	row_id.
		row_id:	SafeUint64;
}

1.11.3.4.1.	Security	Considerations
For	implementors:

The	withdrawal	operation	ID	must	contain	enough	entropy	to	be	unguessable.

Design:

The	user	must	complete	the	2FA	step	of	the	withdrawal	in	the	context	of	their
banking	app	or	online	banking	Website.	We	explicitly	reject	any	design	where	the
user	would	have	to	enter	a	confirmation	code	they	get	from	their	bank	in	the
context	of	the	wallet,	as	this	would	teach	and	normalize	bad	security	habits.

95

List of Tables

Appendix B

Project Management

2024

Feb Mar Apr May Jun

Concept

Get to knowWallee

Get to know GNU Taler

Identify areas of work

API Specification

UX Specification

Implementation

C2EC

Wallee Terminal

Installation

Testing

Documentation

Goal

Architecture

Implementation

Proofreading

Print Thesis

Book Entry

Poster

Video

Presentation

Figure 1: The project plan

96

List of Tables

Iterative approach

During the project, each week a plan is made which described the tasks for the
week. The plan is made on paper and hanged above my desk so I can see it. I in-
form the thesis advisors during theweekly synch call and change them if needed.
For the prioritisation of work, the project plan in section 5.3.3 was used. This it-
erative approach helps to adapt to changing requirements and environment fast.
Since I am working alone on the project, there is no need for more methodolog-
ical overhead or to implement a big project organisation. Requirements are cap-
tured as specificationswithin the Taler documentation repository or in the archi-
tecture section (chapter 3). As part of the weekly planning I reflect the past work
and therefore can change what I think is necessary. Questions and impediments
are directly addressed through the channel and/or person I think can help me
with it.

97

Appendix C

Meeting notes

17.01.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Kickoff

▶ Understanding the Task

▶ Device

▶ Taler

Questions

▶ What am I going to do?

▶ Which components are roughly involved?

Action points

▶ Setup Thesis Document

▶ GNU Taler Copyright Assignment

▶ SSH-Public Key for git

▶ Inspect taler-exchange-wirewatch

Decisions

▶ Implement process ’cashless2ecash’ as part of Taler-Exchange

▶ Wallet initializes process by scanningQR code like in the ’cash2ecash’ show-
case

99

List of Tables

– cash2ecash was implented by the guy named "windfisch" on matter-
most

20.02.2024

Participants

▶ Jung Florian

▶ Häberli Joel

Topics

▶ Introduce each other and explain ideas

▶ Discuss nonce2ecash draft

▶ Discuss who wants to do what

Action points

▶ I send Flo a plan of what I’m going to do until when (approximately)

▶ I update the sequence diagram as discussed and send the openapi spec to
Flo for review.

Decisions

▶ We can establish a generic approach for both our cases. Therefore the ab-
straction of Providers will be implemented. The Providers abstract and gen-
eralize some endpoint which can accept digital cash in any form (Credit
Card, Cash, and so on) and give the Exchange the guarantee, that the digi-
tal cash will eventually be transferred to the Exchange.

▶ The verification at the provider from the perspective of the exchange must
be optional (withdrawing at an ATMwill not get any better than the amount
the ATM sends to the Excahnge in the payment notification). Therefore an
additional request to the provider will not bring any benefit.

Notes

▶ Flowants to create a Reserve containing digital cash from theATM.He then
wants to trigger a peer to peer transaction. And therefore this reserve deals
as guarantee to the Exchange. This flow is possible if the provider is con-
trolled, which in my case is not given (Wallee is a company and I cannot
easily alter their source code to open a reserve)

22.02.2024

Participants

100

List of Tables

▶ Hiltgen Alain

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Task description

▶ Deeper understanding of the topic established?

▶ I contactedFlorian Jung (aliasWindfisch) andwebespokehisworkoncash2ecash.

Questions

▶ Repository ofWallee Applicationwill be different than ’cashless2ecash’? No

▶ Wallee: Master Password? Password received by Ben

▶ Wallee: Which SDK to use? Till-SDK (API to Wallee-Backend)

▶ How do we want to handle different currencies? How about currencies like
Bitcoin? Currency is determined by the currency of the exchange.

06.03.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ API Spec nonce2ecash

▶ Database Spec nonce2ecash

Questions

▶ How can I create a reserve from the mapping table?

▶ Taler / Wallee : Which nonce to use? How to generate the nonce? Is there a
preferred kind to generate nonces within taler?

▶ Dowe add amaximal limit amount for a withdrawal on the side of the Taler
Exchange?

Action points

101

List of Tables

▶ write API specification in .rst format (see /docs/core/api-*.rst in taler docs
git)

▶ use Bank integration API

▶ write SQL schema and generate UML using schema-spy instead of writing
UML.

13.03.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ SQL Schema of nonce2ecash.

Action points

▶ Add rst file to official docs Repository

▶ Add proper versioning to the SQL script.

20.03.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Payto Specification.

Action points

▶ Specify payto-uri scheme in GANA repo

20.03.2024 - 2

Participants

▶ Grothoff Christian

102

List of Tables

▶ Häberli Joel

Topics

▶ Architecture

▶ Payto

Action points

▶ Look at Wire Gateway and Bank Integration API as specification of an API
and not as individual components of Taler. C2EC must implement those
specification in order to integrate into the Taler ecosystem.

27.03.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Discussion of the Architecture documentation

▶ Feedback of Ben and Christian

Action points

▶ Integrate Feedback into documentation

▶ Use official docs repo to specify theAPI (e.g. Bank-IntegrationAPI andWire
Gateway API specification)

▶ No meeting next week.

10.04.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Discussion of the C2EC code.

103

List of Tables

Action points

▶ Use ini-format to parse config

▶ Add support for PGHOST environment variable

▶ Rename config properties to be compliant with other Taler repositories.

– serve

– bind

– unix-path-mode

– etc.

▶ For the confirmation there is the additional case that neither confirm nor
abort is an option and instead retries are required.

▶ Remove doubled abstractions (Abstracting confirmation is not necessary)

17.04.2024

Participants

▶ Hiltgen Alain

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ MidtermMeeting with Expert Alain Hitlgen.

▶ Sequence diagram

Action points

▶ Fix Bank-Integration API

▶ Fees must be shown during the payment on the terminal

▶ The Wire Gateway API must implement "/history/outgoing" and return en-
tries of the transfer table.

24.04.2024

Participants

▶ Fehrensen Benjamin

104

List of Tables

▶ Grothoff Christian

▶ Taler App Team

▶ BFH Guests and Students

▶ Häberli Joel

Topics

▶ New Terminals API

▶ Exponential Backoff, Self-Synchronization

Action points

▶ Integrate new API

▶ The Book entry

01.05.2024

Participants

▶ Fehrensen Benjamin

▶ Häberli Joel

Topics

▶ Wallee Terminal Version

▶ Completion Behavior of the transaction

Action points

▶ Use Version 0.9.20 (not 0.9.12)

08.05.2024

Participants

▶ Fehrensen Benjamin

▶ Häberli Joel

Topics

▶ Submit APK to Wallee

▶ Server is online running C2EC

▶ The Book entry

105

List of Tables

Action points

▶ Supply Wallee and APK (as soon as possible)

▶ Poster

15.05.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Poster and Book review

▶ Wallee was informed about the APK.

Action points

▶ Fix Poster

22.05.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Poster and Book review

▶ Setup of C2EC

Action points

▶ Logging must be enhanced to log every request

▶ Document Future Work (setup process, etc.)

▶ Finalize Poster and Book

▶ Ask Wallee for the APK review.

106

List of Tables

29.05.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Video: dicsussion about what the video shall contain.

Action points

▶ Video

▶ Testing with wallet

05.06.2024

Participants

▶ Fehrensen Benjamin

▶ Grothoff Christian

▶ Häberli Joel

Topics

▶ Finalizing code

▶ Finalizing documentation

▶ Wire-Watch API bugs

Action points

▶ Send thesis to Dr. Alain Hiltgen

▶ Ben installs APK when ready

107

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Perspectives
	Taler Exchange (C2EC)
	Terminal Application
	Taler Wallet

	Goal
	cashless2ecash (C2EC)
	Paydroid Payment Terminal

	Overview
	Components
	Process
	The Terminal
	The C2EC
	The Wallet

	Architecture
	C2EC
	C2EC Perspective
	Withdrawal-Operation State Transitions
	Authentication
	The C2EC RESTful API
	C2EC Entities

	Wallee
	Wallee Perspective
	Wallee Terminal
	Wallee Backend and API

	Payto Wallee-Transaction Extension
	Payto refund using Wallee
	Extensibility

	Implementation
	C2EC
	Endpoints
	Abort Handling
	Processes
	Providers
	Fees

	Wallee Payment Terminal
	Withdrawal Flow
	Screens
	Abort Handling
	Fulfilling Transactions

	Database
	Schema
	Triggers
	Migrating The Database

	Security
	General Security Considerations
	Withdrawal Operation Identifier (WOPID)
	Database Security
	Authenticating At The Wallee REST API
	API Access
	Registering Providers And Terminals
	Hijacking And Stealing Terminals

	C2EC CLI
	Adding Wallee Provider
	Adding Wallee Terminal
	Deactivating Terminals
	Setting Up The Simulation

	Testing
	Wallee Test System

	Deployment
	Preparation
	Setup
	Deploy
	Migration And Releases

	Results
	Discussion
	Limitations And Future Work
	Extensions
	Improvements

	Conclusion
	Technically
	Methodically
	Personally

	Bibliography
	List of Figures
	List of Tables

