
I Engineering and Computer Science
I Computer Science

Bern University
of Applied Sciences

GNU Taler Scalability
Measuring and Improving the Performance of GNU Taler on Grid’5000

Course of study Bachelor of Science in Computer Science
Author Marco Boss and Christian Grothoff
Advisor Prof. Christian Grothoff
Co-advisor Prof. Andreas Habegger
Project partner Taler Systems SA
Expert Han Van der Kleij

Version 1.0 of June 15, 2022

Abstract

This thesis is on the GNU Taler scalability experiments conducted on Grid’5000 in the first
half of 2022, which was preceded by preparations carried out in the second half of 2021
supported by the Next Generation Internet initiative’s NGI Fed4Fire+ program.

The primary goal of this study was to evaluate the scalability of GNU Taler in a real-world
scenario. That is, moving away from the loopback system to a distributed network and iden-
tifying improvement opportunities therein to analyze and improve performance. While the
basic framework was already known from the previous study, this work focuses on extend-
ing the framework and making further improvements to GNU Taler. This includes, among
other things, the horizontal distribution of the PostgreSQL database.

We identified and fixed several bottlenecks in the GNU Taler software. We parallelized the
execution of the cryptographic frontend, leaving the PostgreSQL database as the natural bot-
tleneck. Here, we optimized queries and modified the schema to enable table partitioning.

The scalability demonstrated in our experiments shows that Taler is very capable of pro-
cessing enough transactions per second to be considered an acceptable payment system.
Throughout this work, we were able to increase the performance of Taler by a factor of 95,
from about 300 to 28.5k transactions per second, showing that Central Bank Digital Curren-
cies based on Taler would require only a few exchanges per continent.

iii

Abstract

Acknowledgements

We would like to thank the support staff from INRIA, which were very helpful many times
when we had problems in deploying experiments on Grid’5000 or struggled with the jFed
tool. We are also grateful for the support provided by NGI Fed4Fire+.

Personally, I would like to thankmy two advisors, Christian Grothoff and Andreas Habegger,
who helped me with hints and tips on what I could try next to find bottlenecks. As it turned
out, it was more difficult than we expected.

Then I want to thank Florian Dold, the CTO of Taler Systems SA. He made a lot of improve-
ments to the wallet clients to make the experiments feasible. The same goes for Christian
Grothoff, who made most of the corrections and changes to the GNU Taler exchange soft-
ware allowing me to focus on the experiments, identifying problems and improving the SQL
queries.

Special thanks go to Jose E. Marchesi, who gave me many helpful tips on what we could test
to find out what the problem with our performance might be.

Finally, I would like to thank everyone who responded to my inquiries on mailing lists and
other channels.

iv

Contents

Abstract iii

1. Introduction 1
1.1. GNU Taler . 1
1.2. Focus . 1

2. Related Work 3
2.1. Payment Systems . 3

2.1.1. Project Hamilton (MIT) . 3
2.1.2. Chinese Digital Yuan (e-CNY) . 4
2.1.3. E-Krona (Riksbank) . 4
2.1.4. Performance Comparison . 5

2.2. PostgreSQL . 5

3. Grid’5000 Introduction 7
3.1. Grid’5000 . 7
3.2. Experimental Overview . 7
3.3. Kameleon . 7
3.4. jFed . 8

3.4.1. Resource Specification (RSpec) . 8
3.4.2. Experiment Specification (ESpec) . 9

4. Experiment Setup 11
4.1. Environment . 11

4.1.1. Structure . 11
4.1.2. Build . 12

4.2. Analysis Tools . 12
4.2.1. Data Collection . 12
4.2.2. Data Analysis . 13

4.3. Network System Architecture . 15
4.3.1. Selected Nodes . 16

4.4. Experiment Scripting . 17
4.4.1. Introduction . 17
4.4.2. Procedure . 18
4.4.3. Utility Scripts . 20
4.4.4. Systemd Templates . 20

4.5. Persistence and Recovery . 21
4.5.1. Persistence . 22
4.5.2. Recovery . 22

5. Performance Timeline 25

v

Contents

6. Performance Results 31
6.1. Single System Performance Baseline . 31
6.2. Introduction . 32
6.3. Wallet Performance Analysis . 33

6.3.1. IndexedDB . 33
6.3.2. CPU Consumption . 34
6.3.3. Expensive Serialization . 35
6.3.4. Less Aggressive Behavior . 35
6.3.5. Final Performance . 37

6.4. Exchange Database . 37
6.4.1. Connections . 38
6.4.2. Slow Queries . 41
6.4.3. Dead Tuples . 43
6.4.4. Conclusion . 44
6.4.5. I/O Load . 45
6.4.6. Serialization Errors . 47
6.4.7. Number of Database Transactions . 49
6.4.8. PostgreSQL Benchmark . 53
6.4.9. Stress-Testing the Database Node . 57
6.4.10. Exchange Wirewatch . 60
6.4.11. Conclusion . 68

6.5. Partitioning and Sharding . 68
6.5.1. Implementation . 69
6.5.2. Results . 72
6.5.3. Final Performance . 81

7. Additional Results 83
7.1. Transaction-Load Distribution . 83
7.2. Auditor Inclusion . 86
7.3. Loki Performance . 86
7.4. PostgreSQL Query Analysis . 87

8. Future Work 89
8.1. Exchange . 89
8.2. Exchange Database . 90
8.3. Auditor . 91
8.4. Additional Transactions . 92
8.5. Wallet Clients . 92
8.6. Merchant . 93

9. Conclusion 95

Bibliography 99

List of Figures 103

List of Tables 105

Listings 107
Glossary . 110

vi

Contents

A. Appendix 111
A.1. Dashboards . 111

A.1.1. Transactions . 111
A.1.2. Exchange . 114
A.1.3. Load Statistics . 117
A.1.4. Request Statistics . 120
A.1.5. Database . 121

A.2. Partitioning and Sharding . 124
A.3. Promtail . 126
A.4. PostgreSQL . 127

A.4.1. Configuration Used During pgbench Benchmarks 127
A.4.2. Final Configuration . 127

A.5. Performance Analysis . 129
A.6. Exchange Database Schema . 131
A.7. Thesis Assignment . 132

vii

1. Introduction

Today, central banks all over the globe are investigating possible designs for implementing
a Central Bank Digital Currency (CBDC). Unfortunately, most of today’s electronic payment
systems do either not offer adequate technical privacy assurances to citizens, or are too slow
to handle the expected transaction load [1].

According to a personal discussion with with Giesecke+Devrient, a payment system that is
to support 500 million people for all payments should be able to handle about 100’000
Transactions Per Second (TPS). This would be sufficient to handle the combined rate of all
currently used means of payment, such as credit cards, bank transactions and cash. Natu-
rally, a smaller economy might work well on a much lower transaction rate. For example,
the same per-capita use would imply a need of 2’000 TPS for all of Switzerland.

To assess the scalability of GNU Taler, performance experiments were carried out using IN-
RIA’s Grid’5000. Grid’5000 is a distributed testbed providing computing and storage re-
sources distributed across France (and Luxembourg). The grid allows experimenters to re-
serve groups of machines for experiments giving users direct access to the local hardware
and communication over shared high-speed network links. [2]

1.1. GNU Taler

GNU Taler is a privacy-friendly implementation of a payment system based on neither peer-
to-peer nor blockchain technology [3]. While customers remain anonymous, merchants can-
not hide their transactions to circumvent the law. Compared to Bitcoin 1, for example, Taler
does not offer a new currency, but is backed by an existing currency such as CHF or EUR. [4]
In our experiment case, the currency is KUDOS.

1.2. Focus

This thesis investigates how to scale the GNU Taler payment system to handle the transac-
tion rates thatmight be required by a Central Bank Digital Currency. It describes the findings
of experiments in a distributed setup and the resulting changes in GNU Taler with the goal
of improving performance and reaching the desired scale. It mainly covers performance ex-
periments conducted in 2022, but builds on experiments conducted in 2021 with support
from NGI’s Fed4Fire+.

The work is aimed at people interested in the GNU Taler performance experiments, but can
also serve as a starting point for anyone who wants to work on further improving perfor-
mance. Detailed resources required to perform similar experiments can be found in our Git
repository at https://git.taler.net/grid5k.git.
1Bitcoin: https://bitcoin.org/en/

1

https://git.taler.net/grid5k.git
https://bitcoin.org/en/

1. Introduction

The remainder of the report is structured as follows. Chapter 2 provides a brief introduction
on the other technologies that exist today and their current performance. In Chapter 3 we
provide a summary about the tools which we used to run experiments on the Grid. We
describe our overall experimental setup in Chapter 4. Chapter 5 provides an overview of the
main achievements during this thesis, while Chapter 6 provides amore detailed analyzation
at the experimental findings. Some additional results and findings which are not directly
linked to improving the performance of GNUTaler, are outlined in Chapter 7. Plans for future
work are discussed in Chapter 8. Finally, Chapter 9 discusses the impact on GNU Taler of
the work that has been done.

Note: All URLs seen in footnotes where accessed in the period from March 2022 until June 2022

2

2. Related Work

2.1. Payment Systems

Central Bank Digital Currency (CBDC) research has been going strong lately. CBDCTracker 1

provides a nice overview of which countries are researching which payment systems, un-
fortunately it’s not quite complete as GNU Taler, for example, is not listed anywhere. We
won’t go into each of these technologies here, but there are at least three that have been
discussed frequently recently. They are shown here to compare some key implementation
details (such as privacy) and performance with GNU Taler.

2.1.1. Project Hamilton (MIT)

In Project Hamilton, the Massachusetts Institute of Technology (MIT) is implementing a
hypothetical CBDC in collaboration with the Federal Reserve Bank of Boston [5]. MIT claims
to achieve nearly two million transactions per second with this payment system [6].

Project Hamilton measured its performance with uniform load balancing. However, the
Bank of Japan told us that they do not view this as realistic, and that in their experiments
they encounter problems especially when the load is high and non-uniform. In the real
world, numerous problems have distributions that roughly follow Zipf’s Law 2. In the con-
text of a payment system, this could for examplemean that one account receives themajority
of payments (e.g., 10,000), while most accounts (e.g., 10,000) receive only one payment.
This would result in spiky payment processing rather than an even distribution. We asked
a few individuals at central banks if they had data on actual real-world load distributions,
but they could not provide us with any. Still, we believe that a Zipf distribution is closer to
realistic load situations than a uniform distribution.

Project Hamilton also implements its payment system using the Unspent Transaction Out-
puts (UTXO) model [6]. This means that the system has to store its UTXO data forever, and
keep an ever-growing list of unspent funds (in case the user lost his key or simply did not
spend it), and thus could never fully migrate to new ciphers, especially if we assume that
they cannot contact each owner of funds and force them to spend it, be it because of the
scale of a real-world CBDC or due to privacy restrictions. Having such an ever-growing list
of unspent funds is clearly a disadvantage compared to other designs which can use epochs
or expiration times to limit storage growth and migrate to new technologies without loos-
ing funds. Especially at the claimed millions of transactions per second, Project Hamilton’s
main scalability limit might thus be its long-term storage costs.

A public consultation conducted by the European Central Bank revealed that data protection
is desired by the majority of the population (43%), followed by security (18%) [7]. Thus,

1CBDCTracker: https://cbdctracker.org
2Zipf’s Law: https://en.wikipedia.org/wiki/Zipf's_law

3

https://cbdctracker.org
https://en.wikipedia.org/wiki/Zipf's_law

2. Related Work

privacy is an important aspect to consider when building a CBDC. Project Hamilton decided
to consider this feature in a second phase [5]. However, features like privacy are likely to
have a significant impact on the architecture and performance, further raising questions
about Project Hamilton’s ability to deliver the stated transaction numbers in practice.

2.1.2. Chinese Digital Yuan (e-CNY)

Since 2014, China has been researching a potential CBDC called e-CNY. By the end of 2017,
commercial institutions began to be involved in the research to further drive development,
and by 2021, the high-level design had been completed to the point where pilot programs
could be launched in some regions of China [8].

By the end of 2021, the digital yuan had already been used to settle transactions totaling 90
billion yuan. However, this figure could already be significantly higher today, as the system
was further boosted by theWinter Olympics in Beijing, where people were able to install and
use the electronic wallet [9].

Last year, China published a paper on the progress and research on its digital currency. This
paper states that:

“ E-CNY follows the principle of “anonymity for small value and traceable for high
value,” and attaches great importance to protecting personal information and pri-
vacy. It aims to meet the public demand for anonymous small value payment ser-
vices based on the risk features and information processing logic of current elec-
tronic payment system. ” [8]

However, we need to understand that the definition of anonymity in China refers to the other
user(s) of the payment system. With “anonymous” payments, the shop may not learn the
identity of the payer, but the e-CNY operator and thus the Chinese state has this information
and thus retains full control over its population. When European citizens desired privacy in
the ECB’s survey, we believe that they indeed aspire towards some kind of level of separation
of powers or even citizens being the sovereign, mistrust the state having full transparency
over all transactions, and thus would include privacy against the CBDC operator in their
stated desire for privacy.

2.1.3. E-Krona (Riksbank)

Sweden has also produced highly-cited research into suitable CBDC implementations. Their
project was started back in 2017 with the goal to analyze the need for an e-krona, using a
payment system based on R3 Corda which uses a distributed ledger. In 2020, the project
entered a more practical phase. This phase focused on continuing the development and
testing of the platform, including performance assessments. [10] [11]

While there are no real publications on the performance of their solution, we found that in
Phase 1 they measured a TPS of 100, while in Phase 2 they stated that their performance
was comparable to card systems [11].

The e-krona system also does not implement cryptographic privacy protections for citizens
against the CBDC operators:

4

2.2. PostgreSQL

“Anonymous payments are only permitted to a limited extent according to the cur-
rent anti-money laundering legislation, and only smaller amounts can be trans-
ferred anonymously at present. Accounts may not be anonymous pursuant to cur-
rent legislation, which should be borne in mind when discussing potential anony-
mous e-kronor. It is possible that there may be anonymous e-kronor, but they
would have a very limited area of use. ” [12]

This statement comes from the first phase of Riksbank’s investigation of e-krona. A later
report said that all payment systems leave traces, traces that can be erased after some basic
checks. They also mentioned that privacy is a trade-off with resilience [13]. Again, we can
clearly see that privacy is not their biggest concernwhen implementing the e-krona payment
system.

2.1.4. Performance Comparison

System Reported TPS 3 Critique
Project Hamilton 1’700’000 [5] Realism, Privacy
GNU Taler 28’000+ This work
e-CNY 10’000 [14] Privacy
Visa 1’667 [15] Privacy
e-krona 100 4 [11] Privacy
PayPal 193 [15] Privacy
Ethereum 20 [15] Mining
Bitcoin 4 [15] Mining

Table 2.1.: TPS of different payment systems and cryptocurrencies.

2.2. PostgreSQL

Since we faced bottlenecks with the PostgreSQL database, various tools and articles were
used to analyze and improve its performance. There are tools like pgbench 5 which can be
used to benchmark the database and is provided directly by PostgreSQL. We used this tool
excessively to measure the Performance of the database independent of GNU Taler. Fur-
thermore, there are also many third-party tools. Two of them we have used: pg_top 6 and
pgBadger 7. pg_top provides a top-like interface to PostgreSQL processes, which we used,
for example, to identify problems we were initially having with long-running connections.
pgBadger, on the other hand, creates a summary of database performance in the form of an
HTML report, but requires excessive logging to be enabled if we want full statistics including
query analysis. This is a no-go for our high-performance application as things slow down
drastically with so much logging. In the end, we only tried it once, as many of the statistics
provided can also be visualized in our dashboards by queries rather than by parsing logs.
3Some deployed systems can likely handle significantly more transactions than reported.
4Measured in phase 1
5pgbench: https://www.postgresql.org/docs/current/pgbench.html
6pg_top: https://pg_top.gitlab.io/
7pgBadger: https://pgbadger.darold.net/

5

https://www.postgresql.org/docs/current/pgbench.html
https://pg_top.gitlab.io/
https://pgbadger.darold.net/

2. Related Work

Nonetheless, it still provides statistics that can’t be easily visualized in dashboards, such
as query execution plans. But there we ended up writing our own Python tool that is better
tailored to our use-case.

Apart from the tools, there are also many blog posts and research papers about the perfor-
mance of PostgreSQL on GNU/Linux that we found informative. A small selection of them
are:

I PostgreSQL load tuning: Blog about Linux Kernel and PostgreSQL configuration (Red-
Hat) [16]

I PostgreSQL performance optimization: Wiki about PostgreSQLperformance (PostgreSQL)
[17]

I PGTune: PostgreSQL configuration generator (Community) [18]

I PostgreSQL performance benchmark: Blog about PostgreSQL 12 performance analysis
(EDB) [19]

I PostgreSQL configuration: EDB blog showing some important configurations for Post-
greSQL [20]

6

3. Grid’5000 Introduction

To perform experiments on Grid’5000, knowledge in different tools and applications is re-
quired. This background is summarized in the following sections in order to ease the setup
for someone who is interested in reproducing our experiments or conducting similar re-
search.

3.1. Grid’5000

The Grid’5000 is a large scale and flexible testbed in which research can be done in form
of experiments where researchers are granted exclusive control over individual compute
nodes and associated storage, but share the network. It provides about 800 computing
nodes which can be used for bare-metal deployment. Normally a default environment is
installed which can be used to run experiments. But for a more individual approach it is
possible to create custom environments with pre-installed software. Those environments
can be created by using Kameleon.

3.2. Experimental Overview

The first step is to either select an existing environment provided by Grid’5000 or to create
a custom environment with Kameleon1. Subsequently, jFed is used to allocate resources and
run specific experiments.

To run an experiment, a subset of the nodes of Grid’5000 is reserved using a Resource
Specification (RSpec)2 and a Kameleon environment is specified for each reserved node.
Running the actual experiment in such a configuration is then facilitated using an Experiment
Specification (ESpec)3.

3.3. Kameleon

Kameleon is a tool which can be used to create customized software appliances. Where soft-
ware appliancesmeans a complete operating system image with installed tools and libraries
required for an experiment. It was designed to make experiments in computer science re-
producible [21]. As it is recommended for Grid’5000 research, our experiments are based
on it. Kameleon takes a set of YAML files which define the tools to be installed and how
to configure them. In the case of Grid’5000 there is already a set of default configurations
1Kameleon: http://kameleon.imag.fr/index.html
2jFed RSpec: https://doc.fed4fire.eu/testbed_owner/rspec.html
3jFed ESpec: https://jfed.ilabt.imec.be/espec/

7

http://kameleon.imag.fr/index.html
https://doc.fed4fire.eu/testbed_owner/rspec.html
https://jfed.ilabt.imec.be/espec/

3. Grid’5000 Introduction

which setup basic environments that are compatible with the grid. These base variants can
then be extended with a custom software stack for individual experiments.

To build such an environment Kameleon and its dependencies need to be installed. AGrid’5000
template can then be instantiated in the following way:

$ kameleon r ep o s i t o r y add grid5000 \
ht tps : / / g i thub . com/ grid5000 / environments − r e c i p e s . g i t

$ kameleon new debian11 −custom grid5000 / debian11 −x64−min . yaml

This creates a new environment description based on a Debian 11 compatible with the nodes
in Grid’5000. The created base file debian11_custom.yaml can then be extended to install
the required software. Once the configuration is done the image can be built:

$ kameleon bui ld debian11 −custom

It is also possible to provide build time variables to customize the build. We use this feature
to pass commit hashes which will be checked out before the GNU Taler binaries are built:

$ kameleon bui ld debian11 −custom −g var i ab l e −name : va r i ab l e −value

Once the build has finished, the compressed image and the automatically generated envi-
ronment description (.dsc) must be uploaded to the grid so that it can be referenced in an
experiment description, such as jFed’s RSpec. The command below shows an example of
how to copy the files to the Lille site from Grid’5000.

$ scp debian11 −custom . { t a r . zs t , dsc } <USER >@access . grid5000 . f r : l i l l e / pub l i c

3.4. jFed

jFed is an application which provides a graphical user interface (GUI) to various testbeds,
including Grid’5000. Its primary operations are the reservation of resources and experi-
ment control. There are two main concepts which need to be understood in order to start an
experiment with jFed. These two aspects will be discussed below.

3.4.1. Resource Specification (RSpec)

In order to reserve nodes on the various tesbeds, an XML based configuration called a Re-
source Specification (RSpec) is requried. This can either be created via the Topology (GUI)
or the RSpec (Text) editor in jFed. Basically the configuration must contain which (types of)
node(s) should be requested for a job and which environment should be installed on each
node.

The example below (Listing 3.1) shows the requested node from the Dahu cluster and the
node’s name for the experiment (“DB”). Once this node is allocated successfully, our custom
image’s description (.dsc) generated by Kameleon will be read (disk_image name) and the
image will be downloaded and installed.

8

3.4. jFed

< rspec . . . >
<node c l i e n t _ i d =”DB” exc lu s i v e =” t rue ” component_manager_id=

”urn : pub l i c i d : IDN+am. grid5000 . f r + au tho r i t y +am” >
< s l i v e r _ t y p e name=”raw−pc ” >

< d isk_ image name=
” ht tp : / / pub l i c . l i l l e . grid5000 . f r /~ bfhch01 / debian11 −custom . dsc ”/ >

</ s l i v e r _ t y p e >
< hardware_ type name=”dahu−grenoble ”/ >
< l o c a t i on xmlns=” ht tp : / / j f e d . iminds . be / rspec / ext / j f e d /1”

x=”156.0” y =”70.0”/ >
</ node >

</ rspec >

Listing 3.1: RSpec example snipped reserving a node in the dahu cluster with our custom image located in the public
directory on Grid’5000.

3.4.2. Experiment Specification (ESpec)

After the testbed has allocated nodes to the experiment and deployed the specified envi-
ronments, experimenters can log into the reserved nodes using ssh. However, this may be
inconvenient if the number of nodes is large, and interactive use may not be ideal if the goal
is to produce reproducible experiments.

The Experiment Specification is an additional YAML configuration file which can op-
tionally be used to control experiments using jFed. It allows the researcher to control ex-
periments by providing a way to upload additional data and to execute commands or scripts
on the allocated node(s). It can also provide crucial metadata about a successfully allocated
experiment (in the form of a file upload to the grid), such as the mapping from jFed node
names to the actual nodes reserved on Grid’5000.

An example for a simplistic ESpec control is:

vers ion : 1.0 − bas i c
rspec :

− bundled : t a l e r . r spec
execute :

− d i r e c t : |
! / bin / bash
echo ” Hel lo from the experiment ”
nodes : [”DB”]

Listing 3.2: Simplistic ESpec which will reserve the resources specified in the RSpec taler.rspec and additionally
output the “Hello from the experiment” message on the node with the name “DB”. Other execute methods
could also include scripts to be called.

AnESpec can be rundirectly in jFed, whichwill try to allocate nodes from the testbed andwill
start the uploads/executes once the allocation was successful. Alternatively, it is possible to
load the RSpec first and then subsequently execute the ESpec against the already allocated
nodes.

9

4. Experiment Setup

All Taler-specific resources mentioned in the following sections can be found in the grid5k
Git repository on git.taler.net. In particular, that repository includes all instructions
necessary to recreate an experiment in the grid.

4.1. Environment

Running a job inside the grid requires an environment which can be deployed on the nodes.
For an easy start, a set of default environments is provided byGrid’5000. But since installing
applications at each experiment start is resource and time-consuming, custom ones, con-
taining the required applications can be created using some already existing variants1. The
sections below will describe the environment used for the Taler performance experiments.

4.1.1. Structure

To keep things simple, there is only one environment created for the experiments. This
environment has all required tools preinstalled but unconfigured and disabled. They need
to be set up and enabled on the corresponding node when an experiment is started. This
ensures that even though all binaries are present, only the required ones can use scarce
resources of a node.

The base variant used for this environment is a “Debian 11 with NFS”. The NFS enables an
automatically configured shared directory on nodes located in the same site. This shared
directory will also remain accessible when an experiment ends and nodes are released. This
is an important aspect, since there is information generated during an experiment which
can be interesting for reproducibility or further analysis of problems. An example of such
information are the logs created by the Taler applications while running.

It should be possible to re-create an expired experiment as closely as possible at a later
time. To achieve this, a commit hash of each Taler binary is required when building an
environment. Those commits will then be checked out at build time and the applications
which get installed will be this exact version. Thus, anyone could rebuild the environment
which was used in a particular experiment and reproduce it. We note that this does not
extend to the core Debian system used, which may undergo updates that are not versioned.
However, such changes are unlikely to have a major impact on the Taler experiments.

1Grid’5000 Environments: https://www.grid5000.fr/w/Getting_Started#Deploying_a_system_on_nodes_with_
Kadeploy

11

https://www.grid5000.fr/w/Getting_Started#Deploying_a_system_on_nodes_with_Kadeploy
https://www.grid5000.fr/w/Getting_Started#Deploying_a_system_on_nodes_with_Kadeploy

4. Experiment Setup

4.1.2. Build

The environment can be built locally with a tool called Kameleon. Once Kameleon and its
dependencies2 have been installed the build can be started. This process can take quite some
time (on a LenovoX1 ExtremeGen 2 it took approximately 40minutes for our custom images,
which build all binaries from GNU Taler from source) and possibly requires additional user
interaction. But since the experiments frequently use the latest Taler binaries built from
the latest source, an image rebuild can be needed rather often. To ease this process, the
build can be executed automatically with a Docker setup which can also be found in the Git
repository. Using this Docker setup simplifies things as installing the dependencies to build
the image can be skipped and the image gets deployed to the grid automatically. All that is
required is an SSH private key with access to the grid so that the image can be copied there
once its build finished.

4.2. Analysis Tools

Aside from the core system, we deployed additional tooling specific to the analysis of the
experiments. This includes the tools to collect, ship, analyze and visualize the data gen-
erated by the nodes and applications as well as basic utilities to debug the experiments.
Due to some prior knowledge as well as their flexibility the following tools were chosen:
Prometheus, Loki, Promtail and Grafana. The following sections will explain how these
tools operate together in detail.

4.2.1. Data Collection

For data collection inside the grid a combination of Prometheus3 and Loki4 is used. The big
advantage of Prometheus is that it can monitor nodes as well as applications. Furthermore,
it is also possible to write custom exporters which Prometheus can query.

A list of all (popular) Prometheus exporters, can be found on the official webpage. For our
experiment, we deployed the Node5 exporter to monitor each node’s resources and activi-
ties, as well as the Nginx6 and PostgreSQL7 exporters as we were using PostgreSQL for the
database and Nginx for the reverse proxy.

Loki in combination with Promtail8 is responsible for collecting the logs the applications
write. To limit resource usage on the experiment nodes, a single Promtail instance is used.
Applications will then ship their logs to this instance by using rsyslog9. Loki was chosen
partially because our team already had some experience with it, but there are also other rea-
sons, such as its performance10 and the compatibility with Grafana. The main goal of using
Loki is not to display the logs in the Grafana dashboards, but to easily analyze problems and
2Kameleon dependencies: https://www.grid5000.fr/w/Environments_creation_using_Kameleon_and_Puppet#

Install_Kameleon_and_other_dependencies
3Prometheus Homepage: https://prometheus.io/
4Loki Homepage: https://grafana.com/oss/loki/
5Node Exporter: https://github.com/prometheus/node_exporter
6Nginx Exporter: https://github.com/nginxinc/nginx-prometheus-exporter
7PostgreSQL Exporter: https://github.com/prometheus-community/PostgreSQL_exporter
8Promtail Homepage: https://grafana.com/docs/loki/latest/clients/promtail/
9Rsyslog: https://www.rsyslog.com/
10Comparing Logging Solutions: https://crashlaker.medium.com/which-logging-solution-4b96ad3e8d21

12

https://prometheus.io/docs/instrumenting/exporters/
https://www.grid5000.fr/w/Environments_creation_using_Kameleon_and_Puppet#Install_Kameleon_and_other_dependencies
https://www.grid5000.fr/w/Environments_creation_using_Kameleon_and_Puppet#Install_Kameleon_and_other_dependencies
https://prometheus.io/
https://grafana.com/oss/loki/
https://github.com/prometheus/node_exporter
https://github.com/nginxinc/nginx-prometheus-exporter
https://github.com/prometheus-community/PostgreSQL_exporter
https://grafana.com/docs/loki/latest/clients/promtail/
https://www.rsyslog.com/
https://crashlaker.medium.com/which-logging-solution-4b96ad3e8d21

4.2. Analysis Tools

compute additional statistics from the logs. As logs are passed through different abstraction
layers, they are also written as plain text files to the Grid’5000’s NFS for manual analysis.

4.2.2. Data Analysis

To analyze the data collected by Prometheus and Loki, Grafana11 is used. It analyzes the
data from the two collectors with queries defined in the frontend dashboards. A dashboard
specifies how to render subsets of the collected data.

The advantage of Grafana is that own custom dashboards can be created easily, which is
crucial to adapt the output to the experiments as the analysis progresses.

Dashboards can either be imported from grafana.com’s public dashboard library12 by spec-
ifying an ID, or they can be created manually. The following subsections provide brief de-
scriptions of the dashboards used in the Taler performance experiments. Their detailed
panel description can be found in Section A.1.

Overview

The overview dashboard is the entry point of the Grafana instance. It lists all other dash-
boards which are important to monitor a running experiment.

Transactions

This dashboard visualizes how far we have come to reach our goal of 100’000 TPS. It is capa-
ble to visualize the TPS over the whole experiment duration as well as additional statistics
about the applications in use. Those are important to understand the effect and the corre-
lation on the progression.

The goal of this dashboard is to create a feeling for the impact the different applicationsmay
have on the TPS and which we may need to improve.

Load Statistics

A more detailed or specific look at the performance of the various application nodes in re-
lation to the load they have to handle. This load is usually represented by the number of
requests generated from the clients, in this case the wallets. These requests are logged by
the Nginx proxy which forwards them to the exchanges. Promtail is then responsible for
counting the number of requests by analyzing these logs.

Request Statistics

Request Statistics provides an overview of the time spent on requests to the important end-
points of the exchange. It includes various statistics such as minimum, maximum, aver-
age and different percentiles for request times, as well as the total number of successful or

11Grafana Homepage: https://grafana.com
12Grafana Dashboards: https://grafana.com/grafana/dashboards

13

https://grafana.com
https://grafana.com/grafana/dashboards

4. Experiment Setup

failed requests in a given time period. Most of the data seen in this dashboard is calculated
by Promtail, by analyzing the logs generated by the Nginx proxy.

There are also additional panels that show the latency between the most important nodes
of the experiment, such as the latency between the exchange and the database, or the one
from the proxy to the exchange. Those statistics are generated by the nodes themselves
using ping.

Logs

Many of the logs written by the applications contain statistically important data, such as re-
quest timesmeasured by the proxy or slow queries reported by the database. These logsmust
therefore be available for processing. Fortunately, as mentioned earlier, this can be done
easily with Promtail/Loki. However, since some things sometimes still need to be checked
manually, there is this dashboard that provides a filtering function to look for specific en-
tries in these logs. This featurewas sometimes helpful for us to analyze the logs faster. Since
the number of log lines displayed is limited, more detailed checks have to rely on manual
analysis of the log files stored on the NFS.

Database

This dashboard is a combination of the two library dashboards 455 and 6742, plus some
custom panels. It contains important information about the database, such as its configu-
rations, transaction states, duration and failures.

Exchange

On this dashboard you can see the metrics generated directly by the exchange. It mainly
shows how many signatures/checks are performed per second. But also statistics about the
interaction with the Exchange database, e.g. which queries exceed the configured query
execution time and how often, or the number of database serialization errors that occur at
a given GNU Taler web API endpoint.

Proxy

A fairly simple dashboard that displays the connection statistics of the Nginx proxy. The
basic panels are imported from the public dashboard library with ID 12708. However, there
are also custom panels that display request statistics, such as the average response times
read from the Nginx logs.

Nodes

To detect the resources which might limit the TPS in the experiments, the nodes hosting
the applications need to be monitored too. Thanks to the Prometheus node exporter and
the public dashboard 1860 this is pretty easy. In this dashboard one can see almost any
statistics the kernel provides about the particular node. This includes information about
CPU, memory, I/O, network, processes and others.

14

https://grafana.com/grafana/dashboards/455
https://grafana.com/grafana/dashboards/6742
https://grafana.com/grafana/dashboards/12708
https://grafana.com/grafana/dashboards/1860

4.3. Network System Architecture

Zone: perf.taler.

Loki

Promtail

Monitoring Node DNS Node

Syslog

Prometheus
 Exporters

External Node

Figure 4.1.: Experiment architecture

4.3. Network System Architecture

Figure 4.1 shows the allocation of nodes inside Grid’5000. One important thing to notice
is that Grafana is hosted externally. It needs to be configured with users and dashboards,
where dashboards should also be accessible from outside the grid. While Grid’5000 does
provide a proxy13 where services inside the grid can be reached from outside, it would still
not be very useful because the URL to access the instance would be different in each exper-
iment. The reason for this is that it is almost impossible to reserve the same specific node
for different experiments. So it would be necessary to extract the informationmanually and
passing it to everyone who would like to access the dashboards. This in turn would only be
possible for registered users of Grid’5000, since the proxy requests login credentials.

Another reason for hosting the dashboard externally is that it needs to be configured with
dashboards and users. While it would be possible to do this at every experiment start via the
API Grafana provides, it would still not be efficient, especially as work on dashboards does
not otherwise require a running experiment on the grid. Furthermore, externally hosting
the dashboard simplifies exporting data that is to be preserved.

However, the challenge we faced here is that Grafana queries its datasources (Prometheus
and Loki) and thus needs to know their Grid’5000 proxy URL (which changes for each ex-
periment). Fortunately this can be achieved by using the admin API of Grafana. Through
this API we can update the datasource URLs from inside the grid, once the allocated nodes
are known.

Figure 4.2 shows the initial situation we created in the first part of this work in 2021.

13Grid’5000 Proxy: https://www.grid5000.fr/w/HTTP/HTTPs_access

15

https://www.grid5000.fr/w/HTTP/HTTPs_access

4. Experiment Setup

Figure 4.2.: Nodes allocated in the grid, as shown in jFed. This setup was created in the first half of this work in 2021
when we had about 300 TPS only.

There is only one Exchange node running all Exchange processes, such as taler-exchange-
wirewatch, taler-exchange-httpd, taler-exchange-aggregator, and taler-exchange-transfer.
However, the evolution of the load required that the main process (taler-exchange-httpd)
run on multiple nodes and the other processes be offloaded to separate nodes. This results
in an architecture as shown in Figure 4.3. The current setup allows for any number of Ex-
change, EProxy (exchange-proxy), Wallet, Shard, and Merchant nodes by incrementing the
suffix number.

There are now multiple rspecs in the repository (’additional/rspecs’) that have a different
setup, for example a database without shards or different number of wallets etc. There
are also minimal examples of experiments that are run just to test the setup and not the
performance.

4.3.1. Selected Nodes

Since we only had misc access to the grid in the second part of our experiments, we had
limited resources available. With our access, we were only allowed to use the default queue,
which does not contain the most powerful nodes.

To achieve the lowest possible latency, we decided to place all backend processes in the same
cluster. Themost suitable one, offering enough resources but also nodes, seemed to be Dahu
in Grenoble. This cluster offers 32 nodes with a 10Gbps network connection, 2 times an Intel
Xeon Gold 6130 CPU (Skylake, 2.10GHz, 16 cores/CPU), 192 GB of RAM and one HDD plus 2
SSDs per node.

For the clients, we did not choose an explicit hardware type. They are not required to pro-
vide much performance, just enough to host some wallet processes. They are automatically
assigned by the grid when an experiment is started.

16

4.4. Experiment Scripting

Figure 4.3.: Nodes allocated in the grid, as shown in jFed. This setup resulted from a higher throughput as some
bottlenecks were fixed and more requests were issued. Multiple exchange nodes do share their key
material via NFS. One is responsible for creating the keys while the others are waiting until the primary
one is done.

4.4. Experiment Scripting

4.4.1. Introduction

Ideally, one should be able to run an experiment without needing to perform any manual
configuration work. To make things as easy as possible, most of the configuration and setup
workwas automated using GNUBash scripts. They in turn require a simple configuration file
(.env) which sets environment variables specifying details on how to set up the experiment.

Nodes will get a default configuration file and the allocation info, which contains the map-
ping between the jFed node names and the actual nodes in the grid. Based on the informa-
tion they get from there they know which role to play. For each of these roles there is then a
script which makes the necessary changes to the node configuration and starts the required
services.

To automate these setup tasks, jFed’s ESpec format is used. It allows uploading different
resources, such as bash scripts, which can then be executed in a predefined order and on
specified nodes. According to the ESpec documentation it is preferable to keep ESpecs so
simple that a user not familiar with the format, will be easily able to manually execute the ex-
periment using tools that do not support ESpec [22]. This was also the goal while setting up
these experiments.

Currently, ESpec is only used to upload the configuration file, the allocation info and scripts.
It then executes the setup and run scripts on each node. Even though uploading is currently
part of ESpec, it could be omitted later and instead the scripts that are already in the pre-
installed grid5k Git repository inside the environment could be used directly.

17

4. Experiment Setup

The reason ESpec is used to upload the resources is because it is easier/faster to test changes
in scripts than if they have to be pushed to Git first and then updated in an allocated exper-
iment. The only part that is not really functional without ESpec is the node allocation info.
This info can be uploaded along with the other uploads to get the mapping from jFed to
the grid nodes, which is a crucial part for these experiments so that the nodes know who
to communicate with. However, other tools provide other ways to communicate such infor-
mation to the nodes. Only the setup script would then need to be extended to support the
functionality of this particular script. Essentially, the following steps are performed:

For the most part, the configuration of the services themselves is done statically in files
located in the Git repository. However, many of them contain placeholders to create an en-
vironment that can be easily modified. For example, the Taler systemd service files contain
variables that can be used to change the behavior of the binaries when they are configured
in the .env configuration file before ESpec is run.

4.4.2. Procedure

When starting an experiment, the direct execution of ESpec does some necessary work, such
as moving the uploads from a temporary directory to the desired location. This step is done
because ESpec does not allow overwriting directories during upload. Then the setup script
is (and must be) run first. This copies the configuration files to the correct locations and
changes the files that are common to all nodes. It also cleans up the shared NFS storage and
(re)creates the directories needed for the experiment (e.g. the syslog directories). If config-
ured, setup.sh also rebuilds the applications such as GNUnet and Taler from source before
proceeding. This way, the rather long build (and copy) times for the Grid’5000 environment
can be bypassed. Then, various environment variables are set up that are needed by either
the scripts or the applications. Adding these variables to /etc/environment also makes them
available in each new shell. Finally, it also configures the DNS stub resolver on each node
and the DNS server on the DNS node so that it is ready for the run script. The run script will
(must) be started after that. It determines which role has been assigned to each node (spec-
ified in the jFed node name, which can be read from the allocation info) and registers that
node with the DNS. Finally, it calls the correct script to set up the specific configurations and
the required applications for that role. For convenience, we also perform other additional
setup steps that are similar on each node (if the setting is desired), such as setting up the
node-specific log directory in the NFS or enabling the RTTmeasurement to a particular node.

A role-specific script that should also be mentioned here is the one for configuring the mon-
itor node. This one is special because the node needs to be known to our external Grafana
instance in order to get the data from Loki and Prometheus. A question came from the
Grid’5000 staff about how we achieved that Grafana can query the (with each new exper-
iment different) node from the outside. As mentioned earlier, Grid’5000 provides a proxy
into the grid through which ports such as 80/8080 and 443/8443 can be reached from the
outside. Therefore, we instruct Loki and Prometheus to listen on one of these ports. We
have two initially configured data sources (one Prometheus and one Loki) in the Grafana
instance. However, the proxy requests credentials, so a registered user must add them to
the basic auth configuration of the data source to make them query-able by Grafana. These
data sources are then retrieved on each ESpec run and their URL is changed tomatch the new
Grid’5000proxyURL. All of this can be done throughGrafana’s adminAPI, which is alsowhy
our configuration file requires an admin API token. Since 2020, an issue has been opened

18

4.4. Experiment Scripting

to allow changing datasources without admin privileges, as everything can be accessed with
this token 14. The source code for this particular part is shown in Listing 4.1.

21 # Update a data source on the ex t e rna l grafana ins tance
22 # $1 : Datasource name (conf igured in . env)
23 # $2 : Por t where the datasource i s l i s t e n i n g
24 # (ht tp / http8080 or ht tps / https8443)
25 # See ht tps : / /www. grid5000 . f r /w/HTTP/ HTTPs_access
26 funct ion update _da tasource () {
27 # Get the id of the datasource to update
28 ID=$ (j q −−arg name ”$1 ” \
29 ’ . [] | s e l e c t (. name == $name) | . id ’ \
30 ds . j son)
31
32 # We requ i r e e . g . dahu −2. grenoble . < PORT > . proxy . . . as domain
33 # Ex t r a c t dahu −2. grenoble from ’ hostname ’
34 HOST=$ (hostname | cut −d ” . ” − f 1 ,2 −)
35
36 # Replace the datasource ’ s URL with our proxy domain
37 jq −−arg ur l ” h t tps : / / $ {HOST } . $ { 2 } . proxy . grid5000 . f r ” \
38 −−arg name ”$1 ” \
39 ’ . [] | s e l e c t (. name == $name) | . u r l = $ur l ’ \
40 ds . j son | \
41 cu r l −X PUT −k − f −d @− \
42 −H ”$ {AUTH_HEADER } ” \
43 −H ” Content −Type : app l i c a t i on / j son ” \
44 −H ” Accept : app l i c a t i on / j son ” \
45 ”$ { GRAFANA_API } / da tasources / $ { ID } ”
46 }
47
48 # Update the ex t e rna l grafana ins tance and t e l l i t
49 # about the node which hosts our datasources
50 # I f GRAFANA_HOST or GRAFANA_API_KEY are empty th i s
51 # s tep i s skipped − r equ i r e s admin l e v e l api key
52 funct ion update _gra fana () {
53 i f [[−z $ { GRAFANA_HOST } | | −z $ { GRAFANA_API_KEY }]] ; then
54 return 0
55 f i
56 AUTH_HEADER=” Autho r i za t i on : Bearer $ { GRAFANA_API_KEY } ”
57 GRAFANA_API=”$ { GRAFANA_HOST } / api ”
58
59 # Re t r i e v e the i n i t i a l l y conf igured datasources
60 # and sa fe them to a f i l e
61 # to be used l a t e r in update _da tasource
62 i f ! c u r l −k − f −H ”$ {AUTH_HEADER } ” \
63 ”$ { GRAFANA_API } / da tasources ” \
64 −o ds . j son ;
65 then
66 echo ” Fa i l ed to r e t r i e v e datasources from Grafana ”
67 ex i t $?
68 f i
69
70 update _da tasource ”$ { PROMETHEUS_DATASOURCE_NAME } ” \
71 ”$ { PROMETHEUS_G5K_PROXY_PORT } ”
72 update _da tasource ”$ { LOKI_DATASOURCE_NAME } ” \
73 ”$ { LOKI_G5K_PROXY_PORT } ”
74 }

Listing 4.1: Part of experiment/script/monitor.sh, which is located in the grid5k repository. Through these functions, the
URLs of the data sources stored in our external Grafana instance are updated based on configuration values.

14Grafana datasource API permissions: https://github.com/grafana/grafana/issues/24544

19

https://github.com/grafana/grafana/issues/24544

4. Experiment Setup

4.4.3. Utility Scripts

In our experiments, it is also important to see what effect running multiple wallets in par-
allel has on the performance of the other nodes (e.g., if they scale linearly). To achieve this,
it is important to be able to add and remove wallet clients while the experiment is running.
While this is possible with jFed’sMulti-Command feature, it is tedious to select only the wal-
let nodes, especially when there are as many nodes as we are using. Therefore, we created a
separate script that can be called on any node, provided the node has been configured at least
once by running ESpec. The script can be invoked by the command taler-perf. With the
taler-perf start <TYPE> and taler-perf stop <TYPE> commands, the experimenter
is able to add and remove wallet clients, as well as start and stop wirewatch and and ex-
change processes in a running experiment. The latter is a bit more complicated, since the
proxy and the monitoring node also need to be informed and updated when exchange pro-
cesses are added or removed (because each exchange-httpd process listens on a different
port - see Section 4.4.4). Therefore, it is also easier if it is automated by a script that can be
triggered instead of the Multi-Command function.

In addition, this script can also be used to rebuild selected binaries from the source code
using the taler-perf rebuild command. This will update and rebuild the binaries on
each node of the experiment (similar to setup.sh).

4.4.4. Systemd Templates

We had to find a way to efficiently run multiple processes of the same binary. This is espe-
cially necessary for the various exchange binaries and wallets. Initially we had considered
using GNU Parallel 15, but quickly discovered that systemd 16 provided a more convenient
way to do this, including starting and stopping processes on the fly without having to search
for them. It was also a simple task to accomplish this, since GNU Taler was already using
systemd as a service manager. By adding a ‘@’ character to the name of a systemd unit file,
it becomes a unit template and can be used to start multiple independent processes of the
same application. Everything that comes after the @ character when starting such a unit is
interpreted as an argument and can be used to pass it to the binary, for example. For taler-
exchange-httpd, we used this functionality to specify the port on which each process should
listen. 17 In the template file itself, format identifiers beginning with a ‘%’ character can be
used to refer to these arguments (%i and %I) and other parameters 18. The modification of
the unit files is described with an example in Listing 4.2 and 4.3.

15GNU Parallel: https://www.gnu.org/software/parallel/
16Systemd: https://systemd.io/
17This is necessary because each exchange-httpd process exports independent metrics to Prometheus. For example, if we

were to use port 80 only, we would not get all the metrics in a metrics request, but only those of a single and probably
different process each time. Note that you would certainly use the same port in production, but retrieving the metrics
from such a setup requires further work.

18Systemd Specifiers: https://freedesktop.org/software/systemd/man/systemd.unit.html#Specifiers

20

https://www.gnu.org/software/parallel/
https://systemd.io/
 https://freedesktop.org/software/systemd/man/systemd.unit.html#Specifiers

4.5. Persistence and Recovery

[Unit]
De s c r i p t i on =Ta le r Exchange Socket
Par tOf = t a l e r −exchange −httpd . s e r v i c e

[Socket]
L is tenStream=80
Accept=no
Se r v i c e = t a l e r −exchange −httpd . s e r v i c e
SocketUser= t a l e r −exchange −httpd
SocketGroup=www−data
SocketMode=0660

[I n s t a l l]
WantedBy= socke t s . t a r g e t

Listing 4.2: taler-exchange-httpd.socket unit file before changing to templates, this (socket) service could be
started with systemctl start taler-exchange-httpd.service.

[Unit]
De s c r i p t i on =Ta le r Exchange Socket a t %I
Par tOf = t a l e r −exchange −httpd@%i . s e r v i c e

[Socket]
L is tenStream=%i
Accept=no
Se r v i c e = t a l e r −exchange −httpd@%i . s e r v i c e
SocketUser= t a l e r −exchange −httpd
SocketGroup=www−data
SocketMode=0660

[I n s t a l l]
WantedBy= socke t s . t a r g e t

Listing 4.3: taler-exchange-httpd@.socket template file. This unit takes the port number to listen on as an
argument so that we have independent ports for each exchange-httpd process. %i and %I are used
to reference the argument after @ in the unit which is started like this: systemctl start taler-
exchange-httpd@80.service. (This file can be found in the g5k repository under ‘configs/usr/lib/sys-
temd/system’).

4.5. Persistence and Recovery

At the very beginning, we only had the logs of an experiment on the Grid’5000 NFS. They
could then be downloaded after an experiment was over, in order to perform further analy-
sis or to keep them if needed. In addition, we created Grafana snapshots of the important
dashboards, for example, to create figures for the report. However, with Grafana, it can
sometimes be a bit tedious to persist all panels, as sometimes not all of them are included
in the snapshot. Also, you always have to be ready to take a snapshot before an experiment
expires, otherwise the data, except for the logs on the NFS, will be lost when the nodes are
released. So we had to think about how to keep the data in a more efficient way so that it
could be viewed at a later time and also by someone else.

21

4. Experiment Setup

/home/<g5k-user>/
exp-logs/

exchange-1/
eproxy-1/
…
commits.txt
postgresql.conf
nodes.json

exp-data/
prometheus/
loki/
times.env

espec-times

Figure 4.4.: Grid’5000 NFS at the Grenoble site. While exp-data and espec-times are present only there - respectively only
where the monitor node is allocated, exp-logs is also present at other sites where nodes are allocated for
our experiment. exp-logs contains all logs output directly from syslog and additional information, such as
the used configuration in PostgreSQL for the master node or the commit hashes of the exchange binaries. In
exp-data, we store the Prometheus snapshots, Loki data, and the required timestamps for experiment recovery
(times.env).

4.5.1. Persistence

We found that Prometheus provides built-in snapshot functionality through its API 19, whereas
Loki does not. Instead, we have to back up all the data created by Loki, which means al-
most all the logs again, but in a different format. This means that we had to choose a
different strategy for each datasource. For Prometheus, we set up a service called taler-
prometheus-backup.service that calls the script prometheus-backup.sh every two min-
utes and creates a snapshot that is stored on the NFS. Loki, in turn, is configured to write
all data, including the WAL, directly to this location. In addition to this data, the start and
(Prometheus-) snapshot times are also stored there, as these are needed for recovery. The
directory structure on the NFS is shown and explained in Figure 4.4, these files should be
persisted for later analysis.

To persist this data, the additional/persist.sh script can be used once an experiment is
finished. The -b option collects the persisted files from each site and creates a compressed
archive, which is then copied to the local machine and stored in additional/archives/.
It is a good idea to clean up the NFS storage afterwards using the -d option. Although the
directories will also be cleaned up once a new experiment starts, it is still a good idea to run
the command after the backup. Since the data is deleted only at the locations where nodes
are assigned, it could happen that data from an old experiment is included in a backup
if the second experiment was run at a different location. These two steps are performed
independently to prevent data from being lost accidentally or due to an error.

4.5.2. Recovery

To make the recovery as simple and efficient as possible, it is based on a Docker setup.
This offers many advantages, such as the fact that no requirements other than Docker need
to be installed and that there is always a working setup on different machines due to the
19Prometheus Snapshot: https://prometheus.io/docs/prometheus/latest/querying/api/#snapshot

22

https://prometheus.io/docs/prometheus/latest/querying/api/#snapshot

4.5. Persistence and Recovery

same configuration, operating system and versions of all applications. The setup includes
Grafana with the Image Renderer plugin 20 (to be able to create PNG plots of the recovered
experiment), Prometheus and Loki.

A saved experiment can be automatically recovered using the run.sh script which can be
found in the directory additional/recovery. This script takes as argument an archive or
directory containing the experiment data to be recovered. It extracts this data and config-
ures Grafana with the ”Taler Performance Dashboards” from additional/grafana to dis-
play the data at the time of the experiment. This can be accomplished with the persisted
timestamps. Otherwise, the user would have to search back through history to find the ex-
periment data in the UI. Once configured, the experiment dashboards can be inspected on
localhost:8080 in the same interactive way as in a live experiment, i.e. one could also
configure new panels afterwards to create all kinds of different plots that were not (yet)
available in the live experiment dashboards.

20Grafana Image Renderer: https://grafana.com/grafana/plugins/grafana-image-renderer/

23

https://grafana.com/grafana/plugins/grafana-image-renderer/

5. Performance Timeline

This section summarizes the performance improvements of GNU Taler during this work.
Most of the results shown here are discussed in more detail in Chapter 6.

SW
1:
Pa
rt
iti
on
ed

DB
SW

2:
DB

I/
O
Se
tt
in
gs

SW
3:

Ex
pe
ns
iv
e
H
is
to
ry

Qu
er
ie
s

SW
3:

10
24

bi
t R

SA
SW

4:
Fe
w
er

De
no
m
in
at
io
ns

SW
5:

Fe
w
er

Ex
ch
an
ge

Pr
oc
es
se
s

SW
7:
M
or
e
Pe
rf
or
m
an
t C

lu
st
er
s

SW
8:

M
ul
tip

le
Po
st
gr
eS
QL

In
st
an
ce
s

SW
9:

W
ith

dr
aw

On
ly

SW
11
: L

es
s
Pe
rf
or
m
an
t C

lu
st
er
s

SW
13
: B

at
ch
-W

ith
dr
aw

SW
13
: L

es
s
Ag

gr
es
si
ve

W
al
le
t

SW
13
: A

nt
i-G

um
m
y
Pa
tc
h

SW
14
: W

ir
ew

at
ch

Fi
xe
d

SW
15
: F

in
al
Sp
ri
nt

0

10′000

20′000

30′000

40′000

50′000

60′000

70′000

80′000

Tr
an

sa
ct
io
ns

pe
rS

ec
on

d

TPS Achievements

Figure 5.1.: GNU Taler TPS (withdrawals + deposits per second) achievements during the thesis. The x-axis shows the
Semester Week (SW) and the changes made. The red dots mark achievements that are not so important for
evaluating the performance of GNU Taler, but show what we have achieved with various attempts.

25

5. Performance Timeline

Partitioned DB

Since the end of project two (the work preceeding this one) it was clear that the database
would have to be partitioned/sharded at some point. On one hand, this allows us to de-
crease serialization errors, and on the other hand, we can distribute the computing load
horizontally.

DB I/O Settings

We had already reached the I/O limit at 300 TPS on the database node, at which time we still
assumed that the drives could be the problem. Some experiments with the WAL on different
hard disks quickly showed that this significantly affected the IO load. Fortunately, there are
some configuration parameters for PostgreSQL that can be used to optimize IO performance.
Some of these are clearly unsafe (more in Section 6.4.5), but may be useful for running
experiments on the Grid’5000 platform since we have no control over the type and number
of disks installed on the nodes.

Expensive History Queries

Some of the database queries thatwere issued each time a requestwasmade to the /reserves
or /withdraw endpoints had a serious negative effect on the overall database performance.
They increased response times, serialization errors, and consequently CPU load. Originally,
these queries created a total of 200 slow queries per second with a duration of about 500ms
each, meaning they caused 100s of computation time on a 64-core system per second.

What was most striking is that the queries were technically not required at all in a normal
withdrawal. They computed and returned the full transaction history, when only the current
balance was required. For our benchmarks, they could thus be fully removed by modifying
the database to track the reserve balance with the reserve. However, even then they remain
necessary during error handling, especially in case of disputed balances. Thus, we still
optimized these queries to ensure that they would not become an attack vector for DoS/DDoS
attacks, even though they are not relevant for the measured scenario.

1024-Bit RSA

Once the expensive queries were addressed, we soon discovered that the exchange’s CPUwas
the next bottleneck. Fortunately, we were able to identify the problem by running a simple
top on the node, where the RSA crypto workers took up about 70% of the CPU. To investigate
cryptographic performance, we ran various RSA benchmarks on the following hosts:

Notebook: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz
G5K-Dahu: Intel(R) Xeon(R) Gold 6130 CPU @ 2.1GHz

Which resulted in the following number of signatures per second (single core):

26

Keysize 2048 1024
Libgcrypt 240 877
OpenSSL 2’020 13’434

Table 5.1.: Notebook RSA performance

Keysize 2048 1024
Libgcrypt 201 813
OpenSSL 1’832 12’237

Table 5.2.: G5K-Dahu RSA performance

Considering the performance results, we changed the RSA key size to 1024 bits and achieved
about three times more TPS with the same number of wallets. Thus, changing the key size
also resulted in amajor benefit to the wallet execution time, which before was also a concern
for our experiments.

Naturally, running with 1024 bits would be a concern for production. However, in produc-
tion, wallet scalability is not as critical as in the experiments here, as a single device would
not be used to simulate thousands of wallets. On the exchange side, we found that we are
far away from network or storage bandwidth concerns, so here only the CPU performance
would change. However, we found that the OpenSSL library is about 8 times faster than the
Libgcrypt library used in our experiments. Thus, the increased cost from RSA 2048 should
be more than offset by switching to OpenSSL.

Fewer Denominations

The reduction to 3 available denominations instead of 14 and reducing the lookahead pe-
riod (for which keys are generated into the future) resulted in a significant performance
improvement for the wallet clients: these changes lightened the load on the wallets to such
an extent that they became sufficiently fast to generate the envisioned load for all of our ex-
periments. We note that in practice, 10–20 denominations are quite realistic, but as before
a wallet would have significantly more computational resources available in a real-world
deployment compared to when it is used to drive our load-testing. Nevertheless, optimizing
the wallet code to work well with a large number of denominations and a large lookahead
period was identified as a direction for future work.

Fewer Exchange Processes

After running some PostgreSQL benchmarks with our configuration, we noticed that the
number of (database) TPS decreases whenmore clients are connected to the database. When
we reached 10k TPS in Taler, there were a total of 160 Exchanges connected to the database,
evenly split between two nodes. After we lowered the number to 40 per host, we reached
13.6k TPS and our database TPS maximum of 65k.

However, as the TPS increased, we again noticed a shift in the optimal number of clients for
best performance. In the end, the best configuration was 200 exchanges for a partitioned
single-node database, while 80 exchanges was still best for sharding. However, due to these
observations, we expect this numbers to change even further.

More Performant Clusters

We tested many of the nodes we had access to with our access level for performance with
PostgreSQL, but except for Neowise and Yeti, none really showed much better performance

27

5. Performance Timeline

over the Dahu cluster we started with. Nodes in these clusters were typically able to achieve
85-95k TPS in PostgreSQL. Running on Neowise, we achieved 14.4k TPS (with about 80k
TPS in PostgreSQL), which is not much of an improvement over 13.6k on Dahu. We also
got the same TPS on the Yeti cluster. In fact, in some other experiments with the Dahu
cluster, we were also able to achieve 14k+. So these fluctuations might have been caused by
environmental conditions. We note that we rarely re-ran the same experiment many times
to stay within the utilization limits imposed on us when using Grid’5000.

Multiple PostgreSQL Instances

To test which resource might be limiting our performance in PostgreSQL, we ran some ded-
icated experiments (Section 6.4.9). One of them was to run two independent PostgreSQL
instances on the same node, with independent exchanges associated with them. This is
not useful for performance evaluation of GNU Taler in terms of single exchange TPS, but
showed that the server hosting the database is capable of taking more load. Interestingly,
PostgreSQL’s 65k TPS were almost evenly distributed between these two instances, while
both Taler instances were able to handle almost the same amount of TPS as they did when
they individually reached 65k TPS on PostgreSQL. When we ran the same experiment with
three PostgreSQL instances and exchanges, we again only achieved a total of 23k TPS in Taler
(with the PostgreSQL TPS evenly distributed between the three instances), but the system
not being maxed out in any obvious way.

Less Performant Clusters

To explain the discoveries we made when running multiple PostgreSQL instances on the
same node, we ran an experiment using a lower performing node, one that achieved about
41k TPS with pgbench in PostgreSQL. This was the cluster called Chiclet. However, in Taler
we again achieved only 8.4k TPS, while the CPU on the nodes was consumed about the same
as on the more powerful nodes (e.g., the db node also had only 25%). Thus, at this point,
we were again left with no conclusion or explanation for the bottleneck.

Withdraw Only

When we could not reach more TPS in a full experiment, we decided to do independent
audits of the operations and started an experiment where we only did withdrawals. We
reached the limit at 5.6k, which given the rate of withdrawals to deposits (almost 1 to 1),
was not far from the 13.6k in total. We thus concluded that the withdrawals were likely a
key part of the bottleneck.

Batch Withdrawal

Because we believed and saw that the TPS in PostgreSQL was limited, we tried to minimize
the number of transactions required by combining multiple small operations into larger
ones. For the withdrawal, this meant that we combined several individual requests to /with-
draw that processed a single coin, and thus made individual transactions on the database,
into one large batch that would withdraw all the coins at once. As serialization errors were
no longer an issue, we also made an unrelated change to the refresh endpoint where we

28

combined multiple transactions into one larger transaction. With these changes, we were
able to achieve a peak TPS of 17.5k.

In terms of the withdraw-only experiment, using batch withdrawals improved the situation
modestly, to about 6.2k TPS. Since we had more detailed dashboards at that time, we saw
that when we reached the maximum TPS in Taler, we also had about 6k withdrawals per
second. This implied that the withdraw bottleneck was not really resolved by batching, and
that even if we were not constrained anywhere else, we would not be able to get any further
until the withdrawal bottleneck was resolved.

Less Aggressive Wallet

During the first attempts with batch withdrawals, we noticed that there were some requests
that were not idempotent because a conflict was reported (with HTTP status code 409). It
was initially unclearwhy, as this wouldmean that the same reservewas usedmultiple times,
which the benchmark should never do. However, we found that the problem was with the
wallet client implementation. When wallets did not receive a response for 200 ms, they
tried the exact same request a second time! While in sequential withdraws this was not
noticed, as the implementation had some logic to handle idempotent requests. The draft
batch withdraw implementation did not handle this case at the time, as we wanted to as-
sess its performance impact. Increasing the wallet timeout to 1s had several effects on the
experiments. Most importantly, this resulted in an increase in our maximum TPS to 18.2k.

Anti-Gummy Patch

Ultimately, we found that the wirewatch implementation was the cause for the constantly
high number of transactions per second in PostgreSQL somewhat independent of the actual
transaction load, because it was adaptive: When the database was fast, wirewatch would do
multiple smaller insert transactions, and if the database was slow it would instead do a sin-
gle large batch insert. While batching based on load is actually desired, wirewatch reduced
the batch size so aggressively that Postgres was basically always at peak load if wirewatch
had any significant amount of work at all. We addressed this by forcing wirewatch to sleep
for a fewmillisecondswhenever it had done an insert transaction below themaximumbatch
size.

Immediately, the database TPS dropped substantially below the 65k TPS and became more
proportional to the Taler TPS.

Wirewatch Fixed

Nevertheless, the withdrawal bottleneck briefly persisted. To diagnose it, we ran an exper-
iment using separate wirewatch processes that were responsible for different banks, with
each bank having a different account for the same exchange. Using this setup, we achieved
a new maximum TPS of 19.8k.

We concluded that the withdrawal process was limited to about 6k withdrawals per second
because of the wirewatch process, as it is responsible for creating reserves in the database
for withdrawal transfers received from the bank. Performance did not improve regardless
of what shard sizes were used or how many processes were started. It turned out that the

29

5. Performance Timeline

problem was a regression in the sharding logic. Due to some execution paths, processes
could lock shardsway into the future andwait there for transfers, thus not handling pending
operations for a while, effectively rendering the desired parallelism ineffective. After we
fixed this issue, we ran the withdrawal experiment again and achieved 75k withdrawals per
second (batch-withdraw), with the database performing about 15k TPS per second, far from
the historical limit. Unfortunately, we have not yet been able to clearly determine why we
could not achieve more withdrawals per second, as there was no other obvious bottleneck
either.

We then also ran a complete experiment as usual, where we hoped to achieve much more
as the 6.2k bottleneck in withdrawals was removed, but we only achieved 23.5k TPS (using
batch-withdraw, reaching about 60k DB TPS), which is only a moderate improvement.

Final Sprint

In the end, we tried to tweak a few small things andwere finally able to increase performance
to 28.5k. The changes included several things, like increased number of exchange processes
or halving the number of required database transactions in deposit. Unfortunately we were
not yet able to identify which of these was most responsible for the improvement.

Peeking Into the Future

To identify further bottlenecks, we ran an experiment without refreshes. This is an expen-
sive operation, but necessary to exchange dirty coins that were not fully spent for fresh
ones to achieve unlinkability between different payments. In this experiment, the wallets
withdrew a single coin in one iteration and deposited it directly, eliminating refresh. We
achieved 30k TPS in the process, which is not much more than in our usual experiments
where around 4000 refreshes per second happened (with 23.5k withdrawals+payments per
second).

Based on our results so far, we believe that there are now still twomajor bottlenecks: latency,
which we could only tackle by running more exchanges in parallel, but as we have seen, the
number of optimal connections has changed several times, whichmakes it difficult to clearly
identify the cause. We also still assume that the second bottleneck is the database server,
which we believe is somehow ‘limited’ by the amount of TPS, since we still reach about 65k
in many experiments. Here it might be helpful to implement some of the queries natively
instead of using them with prepared statements or stored procedures.

30

6. Performance Results

Previously, the Taler system had never been benchmarked in a distributed setting: during
previous benchmarks, the respective components were always running on the same node
together. Also, only the exchange component had been subject to benchmarking, using as a
client a simplistic wallet simulator written in C only for this purpose.

In our Grid’5000 benchmarks, we wanted to gain insights into how Taler would perform if
we distributed the components over the network and used the actual production wallet logic
(written in TypeScript) as it may exhibit different request patterns compared to the simplis-
tic client simulator. Furthermore, we wanted to separate the database server from the REST
front-end (which runs the cryptographic operations), moving towards a more “large scale”
real-world deployment with many clients and multiple frontend and backend systems.

In doing so, we discovered a substantial number of new and sometimes unexpected issues.
We will present some of the more interesting findings and possible resolutions in the fol-
lowing sections.

6.1. Single System Performance Baseline1

We started our work by optimizing the Taler exchange on a single system, measuring the
various operations individually. For this, an in-memory real-time gross settlement (RTGS)
emulator was written that allows us to pretend to execute bank transactions. The Taler
aggregator, transfer and wirewatch tools were then updated to support load sharing where
each tool could be run using multiple processes, each taking a range of the queries to be
handled.

We then tested incoming wire transfers (wirewatch), outgoing wire transfers (transfer) and
aggregation of transactions (aggregator) using this setup. Table 6.1 summarizes the transac-
tion rates observed on an AMD Threadripper 1950 and an unoptimized PostgreSQL database
(running on an Intel Optane SSDPED1D280GA).

Operation TPS Shards
Aggregator 33k 16
Transfer 62k 8
Wirewatch 50k 24

Table 6.1.: Single-host benchmarks for the Exchange RTGS integration.

We note that on the same system, Florian Dold and Christian Grothoff had years earlier

1Unlike the other experiments reported on in this thesis, the reported single-system experiments were done by Christian
Grothoff before the start of the thesis.

31

6. Performance Results

benchmarked the main exchange logic to be able to handle about 1’000 TPS when running
a trivial C client against the exchange on loopback.

6.2. Introduction

Note that most of the performance results shown in this section were measured without the
use of batch withdrawals and without the aggregator, while using 2 partitions. If we used a
different configuration, it is explicitly stated in the relevant section. For more information
on why we excluded the aggregator, please consult Section 6.4.

Please also note the following: The results shown here were measured in relatively short pe-
riods of nomore than two hours, since we were unable to reserve nodes on the Grid’5000 for
a longer period (except on weekends or at night). Furthermore, in longer experiments stor-
age capacities could also be exceeded as available disk space on Grid’5000 is limited. While
we do not expect any surprises, we leave conducting longer experiments to see how Taler
behaves during longer deployments to future work. Most results were also measured when
TLS was disabled, as at higher load (20k+ TPS) 4-5 Nginx nodes are required in the Dahu
cluster to process the amount of transactions. However, this should not affect performance
as the load can be easily distributed by adding more reverse proxy nodes.

As described in Chapter 5 we reduced the amount of denominations to improve the perfor-
mance of the wallet clients. After this change we used only the following denominations for
all our experiments:

I KUDOS:1 I KUDOS:4 I KUDOS:8

It is almost certain that there would be a much different combination in a real deployment,
but this should not affect the performance of the exchange in any significant way. For ex-
ample, in this configuration we withdraw 3 coins to get 20 KUDOS (2 ∗ 8 + 4), while a more
canonical use of 1, 2, 4, 8 and 16 KUDOS denominations would typically withdraw a 4 and a
16 KUDOS coin.

In our benchmark scripts bench1.ts and bench3.ts, we then calculated the amount of
KUDOS to be withdrawn by (deposits+1)∗amountdeposit, statically configuring the amount
for payments to 10 KUDOS. For 10 deposits, this would mean that 110 KUDOS would be
withdrawn and then 10 times 10 KUDOS would be deposited. The number of deposits itself
was randomly chosen between 1 and 20 and passed as an argument to the benchmark script.
Thus, we had different amounts from 20 to 210 KUDOS to withdraw and thus also different
combinations of denominations for the coins, which in the end also affects the deposits and
especially the refresh operations. For example, for 20 KUDOS the system would withdraw
2 ∗ 8 + 4, while 50 the system would use 5 ∗ 8. Paying 10 KUDOS with 2 ∗ 8 would result in
the refresh process generating 2 ∗ 1 + 4 in change, while paying with 8 + 4 would result in
2 ∗ 1 in change.

What is a Transaction

There is always the question of which operations in a digital payment system count as one
transaction. Normally, we consider a withdrawal from an ATM or a payment in a store, in-
cluding receiving change, as one business transaction. For banking systems facilitating the

32

6.3. Wallet Performance Analysis

transfer, the debit and credit operations may be separate operations, and with split pay-
ments the situation may become even more difficult.

For our experiments, we wanted to be able to relate the key operations on the HTTP REST
endpoints to the transaction counters. However, simply counting HTTP REST endpoints
would not allow us to reasonably compare batch withdraw and withdraw. Thus, we decided
to always count the number of coins withdrawn and deposited as transactions. As the need
for refresh (change) in Taler may be surprising when comparing payment systems, we are
not including the refreshing process in the TPS.2 However, we do run the refresh process as
usual in Taler.

In practice, we expect a typical Taler deployment to use about 20 different denominations
of value 2i currency units. Assuming transacted amounts are random amounts in the range
of [20 − 220] currency units, this would result in the average transaction involving roughly
10 coins. Thus, converting the reported Taler TPS into business TPS involves a division by
approximately 10.

Counting coins was measured relatively easily when batch withdrawals were not yet imple-
mented, since at that time it was just the number of successful requests to reserves/withdraw
and coins/deposit. For batch withdrawals, we then added new metrics to the exchange pro-
cesses that count the number of coins signed in each request to reserves/batch-withdraw.
In the end, metrics like this were eventually implemented for other requests as well, as
we found that rsyslog was getting too slow in our high load application. This change now
affects the counter as well: While idempotent requests were also counted when counting
HTTP requests (since they return status 200), the new metrics now ignore them, so only
real transactions are reported.

6.3. Wallet Performance Analysis

The Taler wallet performance was originally envisioned as a load generator, but not itself an
optimization target. However, even if we allocated many machines to generate the client-
side load, it turned out that the original wallet performance was inadequate to generate a
sufficient load, even when using the maximum of 800 servers of Grid’5000 to run wallets.

6.3.1. IndexedDB

A key reason for this is that the wallet is typically executed in a browser, and uses the
browser’s IndexedDB for storage. However, for the experiments we are using the NodeJS-
based command-line version, which comes with its own implementation of NodeJS, which
is substantially less efficient. Furthermore, while we can run several wallets per core and
thus dozens of wallets per server, the IO subsystem of the host cannot sustain the resulting
load. A first trivial step was to move the wallet database file onto a RAM disk. However, due
to the inefficient implementation of the IndexedDB in NodeJS, this still is insufficient as the
Taler TPS drop as the wallet database grows over time (as shown in Figure 6.1).

Thus, we modified the wallet to drop its state between iterations to avoid the TPS drop (Fig-
ure 6.2).

2If we had also counted refreshing, we would see about 4k TPS more in our experiments with 23.5k TPS.

33

6. Performance Results

Figure 6.1.: TPS (deposit + withdraw) visualized over time when re-initializing the wallet’s in-memory database after
multiple iterations. It shows the impact of the growing file based json database on the overall perfor-
mance.

Figure 6.2.: TPS (deposit + withdraw) visualized over time when re-initializing the wallet’s in-memory database after
each iteration. The TPS are now stable but still on the same level even though the initialization has to
be done each time.

The wallet’s NodeJS implementation of IndexedDB makes heavy use of a structured clone
primitive to deeply copy objects when storing/retrieving records to/from the database. We
identified this bottleneck and switched to a more optimized implementation, yielding a ≈
40% wall clock time improvement time in local tests.

Furthermore, we discovered that the wallet’s NodeJS implementation of IndexedDB had ac-
cidentalO(n2) run-time behavior when iterating over an index where multiple records have
the same key. While this did not result in any observable performance improvement, we
expect this improvement to become useful once we have identified more queries that would
benefit from better indexing.

6.3.2. CPU Consumption

Thewalletmust perform certain cryptographic operations. Thesewere initially implemented
in TypeScript. As these are rather slow, we have added the ability to offload some crypto-
graphic operations to a crypto worker written in C, which reads requests for cryptographic
operations on stdin and writes the result to stdout. In local experiments, this yielded a wall
clock time performance improvement of ≈ 20%.

34

6.3. Wallet Performance Analysis

About half of the cryptographic operations of the wallet involve checking cryptographic sig-
natures made by other components. As in a benchmark those signature checks will always
succeed (there are no malicious actors), we added an option to disable the signature checks.

6.3.3. Expensive Serialization

When we changed the amount of denominations from 14 to 3, we discovered that the wallets
increased a bit in performance. While this impact was at first only minor, we could create
a major performance boost by also reducing LOOKAHEAD_SIGN in the exchange secmod con-
figuration. This results in the exchange generating fewer denominations and signing keys
into the future. This performance boost came from less json serializations the wallets had
to do, as responses from the exchange became a lot smaller. With the default of 2 years the
responses to /keys were about 900kB each, while setting them to 10 hours made response
sizes go down to 1.7kB. The impact of those changes can be seen in Figure 6.3.

Those changes might not be applicable in production to this extent, but there we would
also have one wallet client per host, thus performance is less important there than in our
experiments. The only thing which could become a problem might be the bandwidth on the
exchange, but this could also be trivially distributed tomultiple nodes. However, it was clear
that there is room for improvement in the way the wallets process the data they receive. It
would also probably not be necessary to retrieve all signatures for every denomination for
the next two years in advance.

6.3.4. Less Aggressive Behavior

Because batchwithdrawwas initially implemented as an experimental featurewithout idem-
potency checks, we discovered a problem that we might not have found otherwise: the wal-
lets were too aggressive in re-issuing requests to the exchange. They retried every request
that was not answeredwithin 200ms. Using our average response time of 75ms 3 plus 12ms 4
round-trip time (also average) between the wallet and Nginx proxy, we get an overall aver-
age of nearly 90ms. So there could be quite a few repetitive requests, especially when the
response time increased whenwewere getting near our TPS limit. While this was not notice-
able for sequential withdrawal requests since they were already idempotent, it showed up as
a conflict for batch withdrawals. We then fixed this behavior by changing the retry timeout
to 1s, which led to several changes in our experiment. Although we did not expect a large
change in TPS from Taler, since the repeated requests basically had to go through the same
operations as the original ones, i.e. signatures created on the exchange, database accesses,
etc., we actually ended up seeing an increase to 18.2k. This was mainly, but not exclusively,
due to the decrease in serialization errors, which no longer occurred as frequently, as the
repeated requests hitting the same row in the database were eliminated. The decrease, in
turn, had a positive impact on repeated queries, and thus on the total number of queries
required to complete a transaction. Which meant that there ended up being more resources
available for further queries.

Notably, this didn’t just impact the backend, but also the clients. While before this fix we
needed about 3000 wallets to reach 13.6k, after removing the aggressive retries, it now
takes about 8400. The reason is simply that retrying a request is cheaper than issuing a
3Measured by the Nginx proxy and represents the complete request time from the first byte received to the last byte sent
4This is measured without entering the userspace, as ping requests are responded by the kernel

35

6. Performance Results

Figure 6.3.: TPS (withdrawals and payments per second) shown with different values for LOOKAHEAD_SIGN. In each
experiment we started two times 600 wallets, and we can see clearly how much their speed improved.

36

6.4. Exchange Database

completely fresh request, but was previously counted as a transaction just like the original
request.

6.3.5. Final Performance

With these changes, we can run only approximately 500 wallets per host (approximately as
there are more or less performant hosts). 5 Grid’5000 currently has around 800 nodes that
could be reserved, which would yield a theoretical maximum of 400’000 wallets. In the
first part of this work, we had some difficulties because each node could only host about 50
wallets, resulting in an absolute maximum of 40’000 clients. Since each of these wallets
could clearly contribute less than one transaction per second to the total, it would have been
impossible to reach the goal of 100’000. However, with the current wallet performance, we
achieve about 1.2 transactions per second with a single wallet, with all 400’000 this would
result in a theoretical maximum TPS of 480k, which is well above our target.

Thus, for subsequent experiments we can be sure that the wallets will no longer will become
the bottleneck. 6

6.4. Exchange Database

Asmentioned earlier, the Taler exchange was previously not run against a database running
on a different server. For the experiments, we co-located the database and the exchange
HTTP frontend in the same cluster. We expected database transactions to take a bit longer
due to the additional network latency. Beyond that, we always expected the database to
become the bottleneck once we distributed the HTTP frontend over multiple machines. As
expected, the database quickly became the source of many performance problems. Thus,
naturally, after most of them were solved, we still suspected the database to be the problem
— even when it later turned out not to be the case. Here, we spent some time in optimizing
our queries, which only resulted in minor gains. Nevertheless, these optimizations were
likely still helpful in boosting the final performance numbers.

Note: Most of the results shown here were measured without batch withdrawals, as they
were not implemented at that time. Also, in most cases, we did not start the aggregator
either. If we did something different, or something specific, it is explicitly noted.

Why we did not use the Aggregator

The reason we did not start the aggregator in most cases is that the materialized indexes
for deposits were partitioned using the HASH method for simplicity. As a result, using
the aggregator leads to numerous slow queries and eventually serialization errors because
a single transaction hits most if not all partitions.

The correct way to partition for the aggregatorwould be to use a RANGEmethod, which should
result in conflict-free transactions. However, further work would be required to create dy-
namic range partitions by date (timestamp) on the wire and refund deadline. These would
5In our mainly used load situation as described in Section 6.2
6There are still venues for improvement, which might have an impact on the performance, but the current implementation
is good enough to reach the 100k TPS in Grid’5000.

37

6. Performance Results

need to be created dynamically, e.g. by a cronjob, to get new partitions for future time ranges
where new rows are inserted. Since the aggregator only touches partitions that are dated in
the past, e.g., because it waits for the refund deadline to pass before initiating the actual
transfer, this would ensure that it only hits a partition that is no longer touched by any other
action. This method is expected to eliminate the serialization errors. Furthermore, as soon
as the aggregator finishes its work on these partitions, they could be safely deleted. While
we are convinced this would work, implementing dynamic partition generation, especially
with sharding, is non-trivial and thus was left for future work.

6.4.1. Connections

During long-lasting experiments the database showed a quite high memory usage until its
node eventually crashed and rebooted at some point. This behavior is visualized in Fig-
ure 6.4 just at the point the RAM was filled. Subsequently, PostgreSQL would occupy all the
available swap space until the node would shut-down and reboot.

Figure 6.4.: The database’s node memory usage with the same connections opened during whole experiment dura-
tion.

In the beginning it was not clear why this happened, since the configuration parameter
shared_buffers was set to approximately a third of the total memory available. Which,
according to the documentation, is the amount of memory available for all processes be-
longing to one database instance7. But as it seems this is not the only way that PostgreSQL
allocates memory:

“Backend processes start out around 5 MB in size but may grow to be much larger
depending on the data they are accessing.” [23].

“The most likely cause for this is that PostgreSQL keeps a per-connection cache
of metadata about all the database objects (tables, indexes, etc.) it has touched
during the connection lifetime. There is no upper limit on how big this cache can
get, and no mechanism for expiring it. So if you have hundreds of thousands or
millions of these things, and a long-lived connection will eventually touch each
one of them, then their memory usage will continuously grow.” [24]

Both of those statements initially found through an article of Italo Santos [25] lead us to
identify the cause of the database server crash.

7PostgreSQL Glossary: https://www.postgresql.org/docs/13/glossary.html#GLOSSARY-SHARED-MEMORY

38

https://www.postgresql.org/docs/13/glossary.html#GLOSSARY-SHARED-MEMORY

6.4. Exchange Database

Figure 6.5.: Verification of the research about long-lasting connections in PostgreSQL. While wallets are doing with-
drawals and deposits the memory usage continuously grows. Once all those wallets are stopped (first
blue line), the memory is still allocated but constant. It is then finally freed when all processes having a
connection to the database, such as the exchange, are killed (second blue line).

Figure 6.6.: The same verification run as in Figure 6.5 showing the connection statistics. Stopping all wallets lets the
connections stay open but without any in an active state. Through those two figures it is clear that the
connection’s memory use only gets larger when they are used. Stopping the exchange processes closes
all connections and thus releases the allocated memory (see Figure 6.5).

The exchange, as well as other Taler processes like wirewatch or aggregator, all use a per-
sistent connection to the database. For each of those connections, PostgreSQL creates a sep-
arate process called backend. While doing work on the database these processes maintain
an internal cache which occupies memory other than the one of the shared buffers. Thus,
they will grow until there is no more memory left (since there is no configuration option in
PostgreSQL which would prevent this behavior).

According to the findings above it would seem that when there is no work to be done for
the backends, their memory usage should stay more or less constant. Since they do not hit
any resources of the database and thus their cache does not grow. Finally, their memory
should be freed once the connection which they originate from is closed. To testify those
assumptions, an experiment is carried out in the grid. The results of this can be seen in
Figure 6.5 and 6.6.

Some of the resources used to find the issue state that one solution would be to use a connec-

39

6. Performance Results

Figure 6.7.: The database’s node memory usage with periodically closing connections due to exchange restarts.

Figure 6.8.: Taler TPS in the same run as in Figure 6.7. Exchange restarts seem to be implemented correctly, without
a visible impact on the performance.

tion pooling mechanism, such as PgBouncer8. We briefly investigated the use of PgBouncer,
but it quickly became clear that PgBouncer can not help with this particular issue: The only
connection pooling strategy9 which wouldmake sense is transaction, since sessionwould be
just the same as when using the connections without pooling and statement is not possible
since Taler uses transactions with multiple statements. But while using transaction pooling
the exchanges fail on creating or using prepared statements.

Thus, the solution we ultimately deployed is quite different: The exchange now has a new
configuration parameter calledMAX_REQUESTS. This parameter is an upper limit for the to-
tal number of requests clients can drop off at the exchange. Once this limit is reached the
exchange process will kill itself. This naturally also releases the database connection and
frees the memory allocated by the connection’s backend. systemd is configured to automat-
ically start a replacement exchange process should one commit suicide.

In order to keep the TPS stable when those restarts happen, the killingmust be implemented
carefully, and thus it happens the following way:

Once the maximum allowed requests are reached, the exchange will close the listen socket
and call fork(). The child process will then finish processing all of the currently active
client connections, so that ongoing requests are completed normally. The exchange parent
process will then exit, which will cause a replacement to be started by systemd. While
the restarting happens quite instantly, the forked child, handling client connections will
probably finish later. Once they do so, the child will also terminate. Taler uses systemd

8PgBouncer Homepage: https://www.pgbouncer.org/
9PgBouncer Pool Modes: https://www.pgbouncer.org/config.html#pool_mode

40

https://www.pgbouncer.org/
https://www.pgbouncer.org/config.html#pool_mode

6.4. Exchange Database

socket activation 10, hence systemd always has an open listen socket, which ensures that
whenever a client initiates a new connection there is a process listening on the port. This
way, restarting of the exchange does not result in any failed requests, thus minimizing the
impact of the restarts on system performance.

Running the same experiment again with the exchange suicide implemented, shows that
the memory is freed once the connection is closed. Figure 6.2 shows the database’s memory
usage in this case. While thememory shows quite clear when it is released, the TPS still stay
stable (Figure 6.8) because the clients can finish their current actions without disruption.

However, with further experimentation and various corrections to the query performance,
we found that memory usage no longer increased as much. This means that the param-
eter MAX_REQUESTS could actually be set to a large number (likely millions or billions of
requests) in a production deployment.

6.4.2. Slow Queries

In our experiments, we found how important it is for good database server performance to
address slow queries. When many slow queries are executed on the node, CPU utilization
can increase sharply. These findings are also shown in Figure 6.9 and 6.10.

An extreme example of such a query was a missing unique constraint and thus index for
wire_targets. The query took about 400-500 ms, but was executed almost 40’500 times
in just 20 minutes, which meant about 5 CPU hours in the same period of time.

During several experiments, we discovered several slow queries. Quite early in the experi-
ments, there was a slow query that took more than 1.5 seconds to complete in some cases.
Fortunately, this high duration was fixed fairly quickly due to a missing index in the table
refresh_revealed_coins that was originally present but then lost due to a schema change.

However, while fixing one of these queries could be beneficial to the TPS for a while, other
slowqueries occurredwhen the load increased. Some similar cases as in refresh_revealed_-
coins occurred as soon as we started partitioning the database. Indexes were lost or forgot-
ten to be added in each partition. Since it is not possible to get unique constraints that are
not part of the partition key of the parent table, they have to be added in each partition
afterwards. This was solved by simple SQL functions using EXECUTE FORMAT like the one
shown in Listing 6.1.

10systemd.socket: https://www.freedesktop.org/software/systemd/man/systemd.socket.html

41

https://www.freedesktop.org/software/systemd/man/systemd.socket.html

6. Performance Results

Figure 6.9.: The CPU usage of the database server compared to the total number of requests to the Nginx proxy
during a slow query in the exchange withdrawal process.

Figure 6.10.: The CPU usage of the database server compared to the total number of requests to the Nginx
proxy when the slow query in the withdrawal procedure is fixed. Compared to Figure 6.9, we
dropped to 5% CPU utilization at 800 queries, while we had about 40% before.

42

6.4. Exchange Database

CREATE FUNCTION a d d _ c o n s t r a i n t s _ t o _ w i r e _ t a r g e t s _ p a r t i t i o n (
IN p a r t i t i o n _ s u f f i x VARCHAR

)
RETURNS void
LANGUAGE p lpgsq l
AS $$
BEGIN

EXECUTE FORMAT (
‘ALTER TABLE w i r e _ t a r g e t s _ ‘ | | p a r t i t i o n _ s u f f i x | | ‘ ‘
‘ADD CONSTRAINT ‘
‘ w i r e _ t a r g e t s _ ‘ | | p a r t i t i o n _ s u f f i x | | ‘ _ s e r i a l _ i d _ k e y ‘
‘UNIQUE (w i r e _ t a r g e t _ s e r i a l _ i d) ‘

) ;
END
$$;

Listing 6.1: Example add_constraint function for partitions of wire_targets. This function adds constraints to a parti-
tion which cannot be created on the (partitioned) main table anymore.

These functions are called once for each partition/shard and add any required constraints
that could not be retained in the parent table. However, due to the partitions, slow queries
occurred again, which hadnot occurred before. Some querieswith suboptimal JOIN or WHERE
clauses required searching all partitions, sometimesmultiple tables. An example of such an
expensive query is recoup_by_reserve, where each JOIN is based on a unique constraint,
but none of them is used as a partition key. This leads to the need to fully scan the partitions
of each table, which can be very expensive in the case of sharding (see more on this in
Section 6.5). However, this was not the only problem with this query. While it was initially
executed in about 100-300 ms, its duration suddenly increased to 1.5-3 sec. We started to
examine the execution plan with EXPLAIN ANALYZE, which showed that PostgreSQL hugely
overestimated the number of rows expected to be returned. These estimates will be very bad
for performance because:

“ […] the query planner uses row count estimates to choose between different query
implementations with very different performance profiles. If those estimates are
a long way out, then the query planner can make some bad choices, leaving your
query running very slowly indeed. ” [26].

There might be many factors that lead to this miscalculation. We focused on dead tuples,
as we did not expect any and some articles suggested that they might indicate reasons why
the query planer produces bad estimates.

6.4.3. Dead Tuples

We found that the known_coins table had a significant number of dead tuples (about 10%
of the amount of live ones). This seemed suspicious at first, given that we were not doing
deletes on the database during our experiments. But looking at PostgreSQL’s UPDATE state-
ment documentation, the dead tuples make sense:

“ In PostgreSQL, an UPDATE or DELETE of a row does not immediately remove the
old version of the row. [...] the row version must not be deleted while it is still
potentially visible to other transactions. But eventually, an outdated or deleted
row version is no longer of interest to any transaction. The space it occupies must
then be reclaimed for reuse by new rows, to avoid unbounded growth of disk space
requirements. This is done by running VACUUM. ” [27]

43

6. Performance Results

Thus, a UPDATE could be considered a DELETE followed by a INSERT. These ‘row versions’ are
also referred to as tuples, where the old versions (the ‘deleted’ ones) are called dead tuples.
Since known_coins, for example, is updated during many operations (such as deposit and
melt), there are quickly many dead tuples.

Although dead tuples do not have a direct effect on the query planner, they might indicate
one thing: stale statistics. Too many dead tuples indicate that the statistics are outdated,
which in turn affects the query planner, possibly resulting in a bad plan. However, they also
affect the amount of disk space used [27] [28]. A common solution is to use the autovacuum
daemon, which updates these statistics and also frees the dead tuples [29]. However, the
default settings may be insufficient for tables that change frequently or grow rapidly. The
schedule can therefore be customized with default_statistics_target 11 and the auto-
vacuum_* 12 parameters on a global or table-by-table basis. We have tried this but soon
realized that it does not have a significant effect on the query plans or the performance for
our experiments.

We also learned that the occurrence of dead tuples could be minimized with so-called HOT
updates where the rows are updated place, i.e. in the same page the old row becomes a
pointer to the new row (HOT chain). This has two main advantages: no indexes need to be
recalculated, and dead tuples are removedwithout having to perform VACUUM 13, possibly im-
proving PostgreSQL’s performance a bit. However, they are also only possible if the UPDATE
statement does not include any indexed row [30], and require additional storage space since
extra space must be kept free for updates in the pages. To enable hot updates, the storage
parameter fillfactor 14 must be evaluated and set appropriately for each desired table.

We made sure that the two relevant updated tables, reserves and known_coins, did not
have any index on updated rows and thus satisfied the requirements for HOT updates. How-
ever, we could not see any immediate performance improvement. While some sources state
that it takes some time to become observable [30], we are sure that it depends on the amount
of data processed, which in our case would certainly be enough. We assumed that we could
not see any direct impact because we did not have a resource at the limit.

Later we added custom queries to our PostgreSQL exporter for Prometheus that made user
table statistics available for dashboards. Through these metrics we saw why we had no
noticeable difference in neither I/O load nor PostgreSQL performance: most of our updates
were already HOT (see Figure 6.11).

6.4.4. Conclusion

We found out that the PostgreSQL query planner can be difficult to understand sometimes.
Despite our efforts, we could not find a way for it to consistently optimize the SQL queries in
their “natural” form. While ad-hoc optimizations by the PostgreSQL planner may generally
be desirable for one-off queries, consistent performance is much more crucial for a secure
system than peek performance or ease of development.

11PostgreSQL Statistics: https://www.postgresql.org/docs/13/runtime-config-query.html#GUC-DEFAULT-
STATISTICS-TARGET

12PostgreSQL Autovacuum: https://www.postgresql.org/docs/13/runtime-config-autovacuum.html
13Because the HOT chain is updated by different DB transactions, e.g. by a SELECT [30].
14PostgreSQL fillfactor: https://www.postgresql.org/docs/13/sql-createtable.html#SQL-CREATETABLE-STORAGE-

PARAMETERS

44

https://www.postgresql.org/docs/13/runtime-config-query.html#GUC-DEFAULT-STATISTICS-TARGET
https://www.postgresql.org/docs/13/runtime-config-query.html#GUC-DEFAULT-STATISTICS-TARGET
https://www.postgresql.org/docs/13/runtime-config-autovacuum.html
https://www.postgresql.org/docs/13/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS
https://www.postgresql.org/docs/13/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS

6.4. Exchange Database

Figure 6.11.: Updates per second in the known_coins table, the table with the most changes. Without adjusting the
fillfactor, we already see 16’700 HOT compared to 700 non-HOT updates per second, while we have a
total TPS of 21k in Taler. It is clear that changing the fillfactor on this table cannot have a significant impact.
(For the reserves table wee see no HOT updates at the default settings, while there are 1000 updates per
second in total)

Since we were not able to achieve a consistently good query planner execution by configura-
tion, we decided to go ahead and try to create different queries to improve the query perfor-
mance by explicitly writing the queries in a way that largely eliminates unreliable query
planner performance. The results of these reformulations are explained in Section 6.5.
Here, we shall simply note that initial attempts to write queries with explicit join clauses 15

to enforce some order of execution were unsuccessful, as even with explicit joins the query
planner still performed queries in unexpected and ultimately suboptimal ways.

6.4.5. I/O Load

At the beginning of the benchmarking (at around 300 TPS in Taler), the database node
showed a very high I/O load. This surprised us a bit since the node hosting the database
(Dahu) uses fast SSDs. According to the datasheet of the main SSD16 the disk should be
able to handle about 400MB/s sequential reads/writes, 90K IOPS random reads, and 10K
IOPS random writes. But the dashboards showed that these values were not achieved in
the slightest: with only 400 wallets, there was an I/O utilization of 80%, but only 406 IO
write-operations and 6.5MB written per second while the read utilization was almost zero.

Several approaches were taken, such as swapping the WALs or temporary tables to another
disk, enabling large pages, or increasing the WAL buffer size. Unfortunately, none of these
approaches provided any relief, but we found that the problem was in the WAL.

Initially, we suspected that the disks might be worn out to some degree given the load they
must endure in a testbed like Grid’5000, or that the datasheet values were generated un-
der ‘laboratory conditions’. However, separate hard drive benchmarks using the flexible IO
tester17 (fio) showed them to be just fine. By digging further into the PostgreSQL documen-
tation, we found out the following configuration parameters 18 19, which might be helpful
for reducing the IO load:
15Explicit Joins: https://www.postgresql.org/docs/13/explicit-joins.html
16Samsung SSD https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZ7KM240HMHQ/
17fio: https://fio.readthedocs.io/en/latest/fio_doc.html
18PostgreSQL Resource Consumption: https://www.postgresql.org/docs/13/runtime-config-resource.html
19PostgreSQL WAL: https://www.postgresql.org/docs/13/runtime-config-wal.html

45

https://www.postgresql.org/docs/13/explicit-joins.html
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZ7KM240HMHQ/
https://fio.readthedocs.io/en/latest/fio_doc.html
https://www.postgresql.org/docs/13/runtime-config-resource.html
 https://www.postgresql.org/docs/13/runtime-config-wal.html

6. Performance Results

I bgwriter_flush_after:
Force data to be written to the underlying OS storage when the specified amount is
reached (default 512kB).

I backend_flush_after:
Same as bgwriter_flush_after but for the backend20 process.

I effective_io_concurrency:
Number of allowed concurrent IO Operations for PostgreSQL, this value may be set
higher for SSDs.

I fsync:
Ensure that data is written to disk via a fsync (or similar) system call. Disabling this
might provide a performance benefit in exchange with reliability.

I synchronous_commit:
Defines when PostgreSQL returns ‘sucess’ to the clients. E.g. only when the data in
the WAL is persistent (synchronous) or earlier already (asynchronous), default is on.

I wal_compression:
Compress WAL pages before writing to disk, might decrease IO but increase CPU load.

I wal_sync_method:
Specifies the systemcall for fsync.

I full_page_writes:
Write entire pages to disk to prevent inconsistent pages after a system crash, default
is on.

I min/max_wal_size:
The boundaries for the WAL size, the configured amount of data can be written until
it gets written to disks by a checkpoint.

We conducted experiments to find out which ones could have the biggest impact. However,
we did not forget that some of them could be dangerous in a live system in terms of data loss.
For example, if we disable fsync, there could be unrecoverable data corruption in case of a
server crash. However, the parameter that seemedmost promising (with the greatest impact
on performance without too much risk of data corruption) was synchronous_commit (read
more about this in section 6.4.8). While the documentation led us to believe that this might
only be useful for client performance, since the data still has to be written to disk, it turned
out to be the most efficient. However, it also turned out that even this parameter can lead
to large data losses:

“ The loss will be less than two times the wal_writer_delay in most cases. But it can
be up to three times in the worst-case. ” [31]

With a default value of 200ms for wal_writer_delay this could result in a total of 60’000
Transactions (Taler) to be lost in the worst case (assuming we reached the 100’000 TPS)
which is clearly intolerable for a banking application. However, it significantly reduced
the IO load (see Figure 6.12), which was not entirely clear since no source indicated that it
would reduce I/O. However, we suspect it reduces the load because the WAL does not have to
be forced to disk for every commit [32]. Therefore, we disabled this setting because we also
do not have a real influence on what disks are installed on the nodes in Grid’5000. There
20PostgreSQL backend: https://www.postgresql.org/docs/13/glossary.html#GLOSSARY-BACKEND

46

https://www.postgresql.org/docs/13/glossary.html#GLOSSARY-BACKEND

6.4. Exchange Database

Figure 6.12.: These two figures show how the synchronous_commit=off setting affected the load on the disks. In both
cases, the WAL was stored on sdb and we started 400 wallets twice (400 wallets: 2.3k and 800 wallets: 4.6k
TPS on the exchange) with the only difference being the value of synchronous_commit. It is clear to see
that asynchronous commits significantly reduce the I/O load, while the number of requests per second on the
exchange remain the same.

is a good article by EDB which shows the performance impact of different values for this
setting [33]. For fsync, however, it is not recommended turning it off, even for performance
experiments, since it is not applicable in production (which was also pointed in multiple
responses on the PostgreSQL mailing list [34]).

6.4.6. Serialization Errors

At the start of the experiments, the database exhibited a high number of serialization er-
rors. We added code to export serialization failure details for each request type to the Taler
software, which shows that serialization errors are directly linked to drops in the number
of requests (see Figure 6.13) as some requests run into timeouts after experiencing repeated
serialization failures. Figure 6.15 shows that the number of slow queries per second also
increases when the serialization errors are high.

Some occurrences of the serialization errors from different endpoints were addressed by
changing the PostgreSQL transactions. The most effective transformation was to replace
‘SELECT and if not exists INSERT’ patterns with an ‘INSERT ON CONFLICT DO NOTHING oth-
erwise SELECT’ approach.

We also considered that we are seeing more serialization errors because transactions run-
ning on another node last longer due to the network latency. To address this, we rewrote
some of the most critical transactions as stored procedures, thereby eliminating the need
for additional round-trips. However, the effect of this transformation was minor.

That said, we still saw a high number of serialization errors for the /withdraw endpoint,
which sometimes reached an average of 3 serialization errors per request. That is despite
these requests should actually never be conflicting.

In the end, we had taken several measures that helped us reduce these errors. These in-
cluded partitioning the tables, which helped eliminate the need to access entire tables, but
also rewriting queries and restructuring tables to fit these new partitions. Equally helpful

47

6. Performance Results

Figure 6.13.: All HTTP request processed by the Nginx proxy per second compared to the serialization errors
(SE) per second logged by the database. It clearly shows the impact of the errors on the number
of requests and ultimately on the total number of withdrawals and payments per second (TPS,
see below).

Figure 6.14.: Taler TPS affected by the serialization errors shown in Figure 6.13.

Figure 6.15.: This figure shows the number of slow queries relative to the number of HTTP requests processed
in the same run as Figure 6.13. Slow queries seem to occur mostly at the same time when serial-
ization errors occur. Looks like these two occur together.

48

6.4. Exchange Database

was the addition of indexes where they were missing, as too many sequential scans of an
entire table can have a negative impact on serialization errors [35]. Towards the end of the
work, we were able to reduce the serialization errors on /withdraw to almost zero. We ac-
complished this by introducing batch withdrawals. Before this change, the wallet sent a
separate request sequentially for each coin in a reserve to withdraw only that coin. Among
other things, this caused the row in the database with the reserve for this coin to be hit mul-
tiple times, namely for all coins of this reserve. If this happened too fast we got serialization
errors when accessing this row. This was even more extreme when the wallet was yet too
aggressive, retrying a request after 200ms would even more increase the probability for two
queries hitting the same row. After this aggressive behavior was fixed we could reduce se-
rialization errors on withdraw from the 30/s seen in Figure 6.16 to below 3/s (Figure 6.17).
For batch withdrawals, they will now withdraw all coins at once in one big request to batch-
withdraw. Which means that the reserve is now directly set to zero in a single database
transaction and thus is only hit once, which makes serialization errors no longer possible.
The results of this change can be seen in Figure 6.18.

With all these changes we have now achieved and shown that regular transactions of Taler
are not conflicting, as designed.

6.4.7. Number of Database Transactions

Since we were consistently hitting the limit in terms of number of TPS in PostgreSQL and
saw no significant number of serialization errors, we tried ways to reduce the total number
of database transactions by running larger transactions. An example for such a change was
the introduction of batch-withdraw, which initially brought only a minor improvement in
performance. We also found that changes like this did not only reduce I/O load as expected,
but sometimes even further reduced the number of serialization errors.

In going through possible places to minimize transactions, we found an interesting case.
Queries issued during the refresh-reveal phase were not part of a transaction block, but were
issued separately, with auto-commits performed for each query. There is no clear number
of how many queries were issued separately, as it is a loop over all fresh coins. We ran two
similar experiments with the same nodes assigned to eliminate fluctuations that can occur
when using different nodes. We found that we saved about 5k TPSwith PostgreSQL, while we
gained about 1k TPS with Taler (see Figure 6.19). However, this was not the only improve-
ment we noticed. In fact, we also gained in I/O utilization on the WAL disk (Figure 6.20)
without any real change in CPU load (Figure 6.21), with I/O load explained by the fact that
fewer transactions need to be written to the log. However, the overall impact on TPS in Post-
greSQL and Taler was small for the change in refresh-reveal. This was to be expected since
there are fewer transactions per second involving refresh than ordinary withdrawals and
payments.

49

6. Performance Results

Figure 6.16.: Number of serialization errors compared to the total size of the exchange database before im-
plementing batch withdrawals. It can be seen that serialization errors are highest for /withdraw.
This figure was recorded when about 6200 requests per second were made to this endpoint,
where about 30 of them failed due to errors. This is still low compared to what we saw at the be-
ginning, but we were able to reduce it to below 3/s at the end due to the less aggressive behavior
of the wallet clients.

Figure 6.17.: Number of serialization errors compared to the total size of the exchange database when the
wallets were adjusted to wait longer before repeating a request. At the time this number was
obtained, there were about 5600 requests per second to /withdraw. Fewer requests are being
made because fewer (probably none) are repeated by the clients, partly because the wallets are
less aggressive, but also because there are fewer serialization errors. It is clear to see that there
are fewer serialization errors than in Figure 6.16.

Figure 6.18.: Number of serialization errors compared to the total size of the exchange database when batch
withdrawals are used. We see that there are almost no more serialization errors anymore; for
900 requests per second to batch-withdraw and about 6300 withdrawn coins per second we see
only 0.05 (about average) serialization errors per second. Again a clear improvement compared
to Figure 6.16 and 6.17.

50

6.4. Exchange Database

Figure 6.19.: The TPS of PostgreSQL compared to those of Taler. The first figure shows the performance beforewe combined
the auto-committed refresh transactions into one large one. In both cases, we initially started 2400 wallets
(in three steps) and then only 30 at a time until we reached the maximum possible TPS in Taler. At the time
wemaxed out in the first one, we had about 2310 requests to /refresh-reveal. We can see that the performance
of Taler did not improve anymore without the combined transactions, while in the second case we reached
up to 14k+ TPS. At this point, we had about 2512 requests to /refresh-reveal, which shows that our change
did indeed make a difference. This is even more clear when looking at the TPS of PostgreSQL, those were
reduced from about 74k to 68k (at the Taler TPS maximum). However, this was not the only improvement. As
we can see in Figure 6.20, the I/O load for the disk where we stored the WAL was also reduced somewhat.

51

6. Performance Results

Figure 6.20.: The I/O load compared to the total number of requests per second in exactly the same experiment as in
Figure 6.19, where the second figure shows the run where the transactions have already been combined. We
see that combining multiple transactions into one also reduces the I/O load on the WAL disk. This is because
the WAL is now also written only once instead of n times. However, we could not explain why exactly it
increases again by so much towards the end.

Figure 6.21.: The CPU usage of the database node compared to the total number of requests to the Nginx proxy. This is
shown for a subset of the time of the experiment of Figure 6.19 and 6.20 to show it more clearly. We can see
that the CPU load did not increase after combining the refresh transactions for the same number of requests.
This shows us that by making changes like this, we won’t suddenly get a CPU bottleneck.

52

6.4. Exchange Database

6.4.8. PostgreSQL Benchmark

As already mentioned we believed to be facing a non-trivial bottleneck with PostgreSQL,
when we had fixed the major problems described in previous sections. We were unable
to reach more than roughly 65k TPS (DB) while CPU, I/O and network showed no signs of
limitation. To track down the problem, we tried many things, which are discussed below.

Towards the end of the experiments, however, we found out that the problem was not in the
database anymore but in the wirewatch, which showed us that we had been looking in the
wrong place for a long time (more below). After fixing the ‘bug’ in the wirewatch, we were
sure that we were bound with the withdraw operation and not with the TPS in PostgreSQL.
Nevertheless, this section describes what we tried to better understand PostgreSQL and its
performance.

The PostgreSQL software stack provides some additional utilities that can be used to perform
various tasks. One of them is the pgbench utility. It can be used to benchmark a PostgreSQL
instance. Therefore, we have performed some benchmarks with our system, which we have
chosen to host the database.

Hardware

Asmentioned earlier we used theDahu cluster in Grenoble 21. A node there has the following
specifications:

I 4 * Intel Xeon Gold 6130 (Skylake, 2.10GHz, 2 CPUs/node, 16 cores/CPU)

I 12 * 16GiB DIMM DDR4 Synchronous Registered (Buffered) 2666 MHz (0.4 ns)

I 1 * SSD SATA Samsung MZ7KM240HMHQ0D3 (used for PostgreSQL data)

I 1 * SSD SATA Samsung MZ7KM480HMHQ0D3 (used for PostgreSQL WAL)

Initialization

To start a PostgreSQL benchmark, the database must first be initialized. This can be done
with the following command:

$ pgbench − i −s 500 −U pos tg r e s pos t g r e s

Benchmarks

To benchmark our PostgreSQL instance, we ran the following command with a variation in
number of clients (-c) from a remote system:

$ pgbench − t 10000 −c 64 − j 32 −h db . pe r f . t a l e r −U pos tg r e s pos t g r e s

This runs 64 clients on 32 threads, with each client executing 10’000 transactions. Where
each transaction includes one INSERT, one SELECT and three UPDATEs [36].
21Dahu: https://www.grid5000.fr/w/Grenoble:Hardware#dahu

53

https://www.grid5000.fr/w/Grenoble:Hardware#dahu

6. Performance Results

Figure 6.22 and 6.23 show the result when we ran the benchmarks against the default and
a custom configuration of PostgreSQL, respectively. The custom configuration used can be
found in the appendix.

Many of the benchmarks found on the Internet use the -S flag to perform read-only bench-
marks, resulting in a much higher TPS. However, since the Exchange database is very write-
intensive (many updates and inserts), we did not focus on read-only benchmarks. However,
for comparison with Internet resources, we ran a benchmark with 80 clients, which resulted
in a total of 507k TPS.

What we see in these graphs is that PostgreSQL slows down the more clients are connected,
we also saw this in our experiments. While we received only 10k TPS (payments and with-
drawals) with 160 exchanges connected, it was 13.6k with 80. This looked strange at first,
as the benchmarks from EDB 22 or Percona 23 (and others) reach theirmaximumTPS atmany
more clients (in the hundreds - but alsowithmore CPUs sometimes). But the PostgreSQLwiki
says that it is optimal to set max_connections to twice the number of physical CPUs (with-
out Hyper-Threading) [37]. This would be consistent with what we observed for the nodes
in Dahu, as the nodes there have 32 physical cores with 2 threads each. However, while we
made improvements and increased performance, the number of clients that proved best for
performance first increased to 120 and finally to 200 with partitioning, while it remained
at 80 with a sharded setup. 24

The amount of TPS in PostgreSQL was almost exactly the same in our experiments, with the
difference that the experiments only used 25% of the CPU, while pgbench used 75%. A dif-
ferent behavior was observed for disk I/O, where pgbench had about 5-10% IO utilization,
while the exchange had 45-50%. In both cases, however, neither system appeared to be the
possible bottleneck. This led us to spend quite a bit of time trying to figure out what the
bottleneck in the database could be, since it can’t be a coincidence that both applications
achieve the same amount of TPS? But nomatter what we did, we could not get the amount of
PostgreSQL TPS to increase. We tried many configuration combinations, such as disabling
huge pages, halving/doubling some configuration values (e.g. max_parallel_workers or
shared_memory), but none of them had a significant impact on performance. The only pa-
rameters that made things run faster were fsync=off or synchronous_commit=off. They
were tested individually with the default configuration and in combinationwith a high value
for min resp. max_wal_size:

Configuration Default WAL Size WAL Size (min=10GB, max=20GB)
Default 33k (100%) 48k (100%)
synchronous_commit=off 49k (100%) 65k (30%)
fsync=off 62k (30%) 65k (10%)

Table 6.2.: PostgreSQL TPS affected by configuration values (pgbench with 64 clients). Values in braces show the average
IO utilization shown by iostat -xm 1

Clearly this table shows that the main bottleneck was I/O at that time and that removing
22EDB pgbench: https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-

advanced-server-12
23Percona pgbench: https://www.percona.com/blog/2017/01/06/millions-queries-per-second-postgresql-and-

mysql-peaceful-battle-at-modern-demanding-workloads/
24The number of optimal clients in sharding might also be different now, because the last experiment we ran with a sharded

setup was at the time when we had 120 connections in a partitioned setup and reached about 23.5k TPS in thaler.

54

https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-advanced-server-12
https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-advanced-server-12
https://www.percona.com/blog/2017/01/06/millions-queries-per-second-postgresql-and-mysql-peaceful-battle-at-modern-demanding-workloads/
https://www.percona.com/blog/2017/01/06/millions-queries-per-second-postgresql-and-mysql-peaceful-battle-at-modern-demanding-workloads/

6.4. Exchange Database

0 20 40 60 80 100 120 140
10′000

15′000

20′000

25′000

30′000

35′000

Number of Clients

Tr
an
sa
ct
io
ns

pe
rS

ec
on
d

Figure 6.22.: PostgreSQL TPS (average of 3) measured with pgbench when us-
ing the default postgresql.conf and a node in the Dahu cluster.

0 20 40 60 80 100 120 140

20′000

30′000

40′000

50′000

60′000

Number of Clients

Tr
an
sa
ct
io
ns

pe
rS

ec
on
d

Figure 6.23.: PostgreSQL TPS (average of 3) measured with pgbench with the
custom configuration which can be found in the appendix (List-
ing A.4), this was done on the same node as in Figure 6.22.

55

6. Performance Results

some I/O operations resulted in more TPS. To verify that I/O cannot be the problem any-
more the data (including WAL) directory of PostgreSQL was placed in memory. But this
did also not increase the TPS any further. max_wal_size can be set high enough in order
to eliminate ‘forced’ checkpoints, so that they occur on a regular basis (configured with
checkpoint_timeout) and thus do not impact performance too much [38].

Insertion: What are WAL and Checkpoint?

To understand the above section, it may be helpful to know what WAL and checkpoints are
and do, respectively. The Write Ahead Log is a concept to ensure data integrity, because
what would happen if we write an insert (commit) directly to disk and the database server
crashes during it? To prevent this, an insert is first written to the WAL, which is basically
a log file that contains all the changes that need to be persisted in the database files. At
some point, however, this data must be written to the real database files. This is done by a
checkpoint that takes entries from the WAL and writes them to disk so that the WAL space
can be reused. In the event of a crash, all changes that were not written by a checkpoint can
be restored from the WAL. [39] [40]

Discussion

It could be that the dataset was too small, resulting in many serialization errors or locks on
rows/tables that slow things down. However, changing the size of the dataset at initializa-
tion (-i -s N) did not result in any significant change in the performance. This gave us
the idea that the problem might lie elsewhere, possibly in the operating system. One guess
was also that the operating system’s lock concurrency might be the problem, which would
be easy to debug with the linux-perf tools. However, to record lock statistics, one would
need to build a custom kernel that had the statistics enabled [41]. It would also probably
be a lot of work to get this customized kernel into the grid to simply run some experiments.
But even without these statistics, we could exclude lock conflicts from the list of possible
bottlenecks, since they would certainly be visible as sleeping processes in the output of
vmstat. However, the output of vmstat 1 (Section A.5) shows no such processes (column
b), indicating that ‘no’ processes are actually blocked and waiting for a lock to be released.

Another factor that could potentially limit performance would be locks or wait events within
PostgreSQL. But these could also be ruled out, since various queries, such as:

SELECT * FROM pg _ l o ck s
WHERE granted IS f a l s e ;

and

SELECT wai t _ event , count (*)
FROM p g _ s t a t _ a c t i v i t y
WHERE s t a t e = ’ i d l e in t r ansa c t i on ’
GROUP BY wai t _ even t ;

56

6.4. Exchange Database

have not yielded anything that would indicate a solution [42] [43] (statistics like these are
also shown in the dashboards).

Unable to identify the issue, we created posts on the mailing lists of PostgreSQL [34] and
Grid’5000 25, the PostgreSQL Slack channel 26 and StackOverflow 27. Most answers falsely
suggested that I/O was the problem, and (unhelpfully) that we should definitely not disable
fsync (which was so at this time). But we already ruled out I/O as the problem, because
there are no faster disks than RAM, which we used in some of our experiment to exclude I/O
from the list of possible bottlenecks.

6.4.9. Stress-Testing the Database Node

Since we could not find a solution to our (what we believed) performance problemwith Post-
greSQL, we ran several additional experiments to help us find our non-trivial bottleneck.
Most of them involved pushing the available resources, which in most cases are the cause
of a performance problem, to the limit during a maxed out experiment. Since our resources
were obviously not running at maximum, we hoped that this might lead to new insights,
since it is unusual that performance cannot be improved when there are still enough re-
sources available. The following sections briefly describe what we did.

I/O

We have made many attempts to see if I/O could be our bottleneck, such as using NVME
disks (with nodes of the Yeti cluster) or moving all data to memory. However, as we have
already explained, none of these measures resulted in a performance increase. However, to
really rule it out, we went one step further and pushed disk utilization to the extreme by
using fio during a running experiment. The results of this experiment show that the hard
disks are quite capable of taking more load than they are exposed to in our benchmarks, see
Figure 6.24.

Figure 6.24.: The flexible io tester (fio) is running on the disks of our database node while we are at the TPS limit of
PostgreSQL. We can clearly see that even when the disks are fully utilized, we still have about the same TPS.
Thus, we can (once again) rule out the disks as possible bottlenecks.

25No link because it requires a login
26PostgreSQL Slack: https://postgres-slack.herokuapp.com/
27StackOverflow Entry: https://stackoverflow.com/questions/71631348/postgresql-bottleneck-neither-cpu-

network-nor-i-o

57

https://postgres-slack.herokuapp.com/
https://stackoverflow.com/questions/71631348/postgresql-bottleneck-neither-cpu-network-nor-i-o
https://stackoverflow.com/questions/71631348/postgresql-bottleneck-neither-cpu-network-nor-i-o

6. Performance Results

CPU

Since we only had about 25% CPU load, we were pretty sure that this couldn’t be the bot-
tleneck, especially since we have also already seen that PostgreSQL is equally fast when we
reached 75% load while using pgbench. Nevertheless, we also added load to this resource
using a third-party tool called cpuburn 28 during an experiment. While there was a notice-
able drop in PostgreSQL’s performance (shown in Figure 6.25), this is nothing unexpected;
after all, the CPU is now heavily loaded by other additional processes. Therefore, even after
this experiment, we were sure that the CPU was not our main problem either.

Figure 6.25.: cpuburn is used to fully utilize the CPU. Although this is the first effect we can really observe, it is still nothing
that is unexpected as there are more processes now.

Network

As with the other resources, we also loaded the network while an experiment was running.
To do this, we used iperf 29 to send large amounts of data from the exchange nodes to the
database node. Again, we can exclude the resource from the possible bottlenecks, as we see
in Figure 6.26 that the load generated by the additional network traffic did not really affect
PostgreSQL’s performance.

Figure 6.26.: The iperf utility is run to keep the network busy. As we can see, the effect is small, but this is clearly not a
bottleneck either.

28cpuburn: https://patrickmn.com/projects/cpuburn/
29iperf: https://iperf.fr/

58

https://patrickmn.com/projects/cpuburn/
https://iperf.fr/

6.4. Exchange Database

Multiple PostgreSQL Instances

Since we did not reach anywhere near full utilization for any of the most common bottle-
necks on any of the DB nodes we tested, we wanted to see what would happen if we hosted
twoPostgreSQL instances on the samenode. To do this, we initialized twoPostgreSQL servers
with independent data on different ports. The data was still stored on the same disks, but
both instances used independent directories. Then we initialized two exchange nodes, each
communicating with one of the PostgreSQL instances. The only thing that was then shared
was the hardware of the database node, that of the clients and the bank, of which there
was only one. The clients were also configured to ensure an even distribution of operations
across the exchanges. The idea was to find out if the server hosting the database is capable
of taking more load and if there might be a bottleneck in PostgreSQL or due to a misconfig-
uration.

In the first run, we found that the TPS on PostgreSQL was more or less spread across the two
instances. Whereas with a single instance we had about 65-70k at full load, we now had two
instances with a maximum TPS of 35-45k. However, we were surprised by another fact: our
dashboards showed that both instances of Taler reached 23k TPS (peak) together, almost
double what we normally had (13k). And all this while on the DB node, the main resources
also almost doubled. Next, we ran the same experiment also with three instances, which
resulted in the database TPS again being evenly spread across the three instances running
on the same hardware. However, we again achieved ’only’ around the same TPS in Taler as
with two instances, despite the CPU load still suggesting that we would have more resources
on all nodes available to achieve more.

While puzzled by this behavior, we tested various other things, which eventually lead us
towards finding the bug in the wirewatch code (see Section 6.4.10).

Less Performant Nodes

Since we were obviously able to achieve more TPS in Taler with less possible TPS in Post-
greSQL, we thought it might be possible to achieve the same TPS in Taler on a less powerful
node. So we searched the grid for a node that could only achieve about 45k TPS with Post-
greSQL and found that there were such nodes in the Grisou 30 cluster. However, unlike our
discoveries with multiple instances, we were only able to achieve 8.1k TPS in Taler, while
we achieved 42k TPS with PostgreSQL, so this still did not explain our previous findings.
It led us to believe that we might be limited by the PostgreSQL implementation, unless we
missed a crucial configuration option. However, we could probably rule this out, since we
did not receive any hints in our support requests about a different configuration than the
one we already tried.

CentOS

To also rule out a bottleneck that could come from the operating system, we created a second
image based on centos-8 with kameleon exclusively for the database node. 31 But even this
change was not helpful and showed that it is perfectly fine to use debian-11 for the database
(and our other nodes).
30Grisou: https://www.grid5000.fr/w/Nancy:Hardware#grisou
31The image definition is also included in the Git repository on taler.net and in the Docker build setup. It can be built with

the --centos flag when using Docker, or as shown in Chapter 3 for manual builds.

59

https://www.grid5000.fr/w/Nancy:Hardware#grisou

6. Performance Results

Artificial Network Delay

After all the experiments described above, there was still something to investigate. It could
be that latency between the database and the database clients, such as exchange or wire-
watch, is causing the TPS to stagnate. To test the impact of latency on our performance, we
ran a simple experiment where we created artificial network latency by using traffic control
(tc) 32 on the database node. We did this again while Taler was running at its TPS limit,
adjusting the round-trip time several times (see Figure 6.27). The result was quite interest-
ing: while PostgreSQL was immediately affected by any additional latency, we saw that Taler
was not much affected by it. This raised the question of why Taler is still so fast when it is
actually limited to a third of the original number of queries per second, because we have
also already seen that this does not work on nodes reaching less PostgreSQL TPS in general.

Figure 6.27.: PostgreSQL TPS compared to Taler TPS, while we added various artificial network latencies to the database
node using traffic control (tc). The resulting round-trip times, measured with ping between the exchange
and the database, are shown in the figure (45us are default with no additional delay). It can be clearly seen
that the TPS in PostgreSQL is extremely affected by the additional latency, while Taler does not show a real
impact until 4 to 5 times the default round-trip time. But even then, the change is not remarkable compared
to what PostgreSQL sees.

This would mean that if the delay is shorter, more queries are issued by a component that
are not directly helpful to the TPS in Taler. To investigate this, we stopped the closer and
transfer processes to see if PostgreSQL’s TPS changed, but according to our expectations,
there was no change since they shouldn’t have done much anyway. This leaves wirewatch
as a possible cause. However, the problem with wirewatch is that this service is required
for the experiments to work, since it creates the reserves in the database once it receives the
money from the bank. Therefore, we had to find the problem by looking at the code, and
found that wirewatch was actually the cause of the TPS fluctuations in PostgreSQL.

6.4.10. Exchange Wirewatch

Normally, wirewatch queries the bank for incoming transfers (withdrawals) with a window
size of 1024 transactions and places their reserve in the database. If wirewatch queries the
bank too fast, it gets only a subset of these transactions, say 10, for these ten it then per-
forms the transaction in the DB, and once this transaction is finished, it fetches the next
transfers from the bank. Now if we add a delay to the DB, that interaction with the DB will
take longer, which will cause it to wait longer to query the bank again. So ultimately, we get

32Traffic control: https://en.wikipedia.org/wiki/Tc_(Linux)

60

https://en.wikipedia.org/wiki/Tc_(Linux)

6.4. Exchange Database

Figure 6.28.: The TPS of PostgreSQL compared to that of Taler when we set the wirewatch to wait before issuing transac-
tions in PostgreSQL. We can see that the total TPS in PostgreSQL is now well below the 65k. Note, however,
that we have two wirewatchers for different accounts on independent banks running here, which we did to
hopefully identify other issues with the wirewatch implementation.

more transfers per request to the bank, which in turn leads to fewer database transactions.
The solution then was to wait a certain amount of time in wirewatch before it starts database
interaction, or at least wait except when the window of 1024 inserts is filled. This helped us
reduce the number of TPS on the DB well below 65k (Figure 6.28). This change eventually
showed us that we could have a lot more transactions in PostgreSQL, so wirewatch is proba-
bly the next bottleneck to investigate, as we had now clearly reached the limit of capacity on
withdraws since we could now only reach about 6.2k withdrawals per second in experiment
doing only reserve creation and withdraw.

Withdrawals Only

Fortunately, this withdrawal bottleneck was resolved fairly quickly. The wirewatch pro-
cesses allowed some code execution paths that locked shards far into the future, waiting
there for transfers that may not have come during our experiments, so the actual transfers
were pending for a while. Once we identified and fixed the problem, we were able to achieve
about 75k withdrawals per second in batch-withdraw with our normal withdrawal amount
calculation, while not being anywhere near the DB TPS limit (see Figure 6.29). The next
issue, if the withdrawals increase more, might probably become I/O load again soon (Fig-
ure 6.30). However, while we achieved much lower DB TPS in some cases, it could again be
very different in others (see Figure 6.32 and Figure 6.33). Of course, this means that there is
probably still a bug in Taler somewhere, but we would not reach that many withdrawals per
second in our usual experiments with the current performance anyway, since we reach the
DB TPS earlier when deposits and updates are also included. Nonetheless, this is an issue
which must be addressed in the near future.

To see the impact of batch-withdrawals, now that the obvious 6.2k withdrawal bottleneck
was gone, we also ran an experiment with sequential withdraws again, which can be seen
in Figure 6.31. Clearly batch-withdrawals have a huge impact on the performance, and we
hope to see similar results once batch deposit is implemented.

As we ran several experiments with different modifications, we were able to identify more
aspects in the wallet code which could be improved, and some rather unexpected ones in
the monitoring setup. The identified issues found in these experiments are shown in Sec-

61

6. Performance Results

tion 6.4.10.

Note that in the figures mentioned, which represent experiments with withdrawals only,
200 exchange processes are distributed over five nodes. Since we again found an increased
optimum in the number of processes, we increased them in small steps from 120 (which
yielded about 50k withdrawal TPS in Taler) to 200, which seemed optimal. However, we
must also say that we may have made a mistake by starting the exchange processes in run-
ning experiments. We ‘accidentally’ left the number of processes at 200 and ran an addi-
tional experiment with deposit, where we again achievedmore Taler TPS, while we assumed
120 as optimal - this number we also determined at that time by starting during an exper-
iment. However, since starting an exchange process is expensive (due to DB initialization)
it may actually slow down a running experiment rather than increasing it.

Figure 6.29.: TPS of PostgreSQL and Taler when performing an experiment with batch withdrawals. This figure was created
when our usual withdrawal amount calculation was used (20-210 KUDOS) - 200 exchange and 8 wirewatch
processes running. Obviously, the DB TPS are not the problem here with only 25k. But we still could not
achieve more than 75k withdrawals per second - the most used nodes were five exchanges on 50% CPU and
one DB node on 40% CPU, average latencies reported by nginx where 2.25s for reserves and 700ms for batch-
withdraw (4’800 requests per second each).

Figure 6.30.: The I/O load in the experiment shown in Figure 6.29, we will obviously be limited by IO again soon (in
Grid’5000) if the TPS of withdrawals continue to increase.

62

6.4. Exchange Database

Figure 6.31.: An experiment configured the same as in Figure 6.29with the only exception that we disabled batch-withdraw
and made the withdrawals sequential again. The rollbacks in PostgreSQL’s TPS reflect the serialization errors
at that point, so you can clearly see that batch withdrawals are indeed crucial for performance. As we can
only reach about 22k Taler TPS compared to 75k with batch-withdrawals.

Figure 6.32.: In our attempt to further address the wirewatch problem, we conducted another experiment with batch with-
drawals. In this experiment, we used a constant amount for the withdrawal (10 KUDOS), resulting in three
coins. In fact, we were able to achieve much less TPS in Taler than in Figure 6.29, while in PostgreSQL we
had more relative TPS (which is explained by the fact that there are more single withdrawal operations and
thus more requests triggering DB transactions). But we identified quite different issues again: the wallet
clients once more became the bottleneck (Section 6.4.10) and we noticed that our metrics might be an issue
too (Figure 6.38). During this experiment, we had about 10’000 requests to reserves and batch-withdraw
(∗3 coins ≈ 30k withdrawals) with a corresponding latency of 1.5s and 70ms (at 30k Taler TPS).

63

6. Performance Results

Figure 6.33.: We ran the same experiment as in Figure 6.32 againwith a larger constant amount of 1010 KUDOS (128 coins),
we now again have fewer DB transactions (on average) compared to the previous experiment, since a single
request to batch-withdraw now receives 128 coins. In theory, however, this should result in much higher
withdrawals per second compared to DB TPS, as Figure 6.29 shows fewer DB transactions with about the
same amount of Taler TPS, while making many more requests - here it is about 590 requests to reserves and
batch-withdraw with latencies of 1.6 and 1.2s, respectively. In this figure where eight wirewatch processes
running, which we reduced to one in Figure 6.34, which resulted in a completely different figure.

Figure 6.34.: The same experiment as in Figure 6.34 but with a single wirewatch process rather than eight. We can see that
the DB TPS are at our limit again while we would again expect much less than in Figure 6.29, since there are
only about 675 requests to reserves and batch-withdraw respectively, withdrawing 128 coins each. This and
the previous figures probably indicate a further bug in the wirewatch logic which must be inspected soon.
(Reported latencies by Nginx: 700ms on reserves and 1.3s on batch-withdraw)

64

6.4. Exchange Database

Complete Experiments

Subsequent full experiments let us reach 23k+ TPS in Taler, with the DB again very close
to our historical limit (Figure 6.35). However, only 120 Exchange processes were connected
at that time and four wirewatch processes were running. Together with a change in the
exchange, halving the number of DB transactions in the deposit operation, we eventually
achieved 28.5k TPS with Taler while having only two wirewatch but 200 exchange processes
running (Figure 6.36). Unfortunately, there was not enough time left in this work to figure
out which change was most important in increasing the TPS. Therefore, these experiments
may need to be repeated incrementally to see what factor was most useful.

Figure 6.35.: The TPS of Taler relative to the TPS of PostgreSQL in a full experiment (not just withdrawals). While we were
able to get much more withdrawals, we were not able to increase the TPS in Taler much, as we again came
very close to the limit of PostgreSQL. At the time of this experiment there were 4 wirewatch and 120 exchange
processes running.

Figure 6.36.: The same experiment again with a different configuration: only 2 wirewatches, but 200 exchanges running.
Together with a change in the exchange logic to halve the number of DB transactions, we finally reached 28.5k
TPS. We can see that there are fewer TPS than in Figure 6.35, unfortunately we haven’t yet figured out which
of the changes (more exchanges, fewer wirewatchers, or halving the DB transactions) contributed most to the
increase in TPS. But before we can verify this, we probably need to identify the remaining wirewatch problem
first.

Identified Bottlenecks

During the experiment shown in Figure 6.32, we were able to locate three additional oppor-
tunities for improvement, which fortunately did not really affect our results so far. They are
explained below.

65

6. Performance Results

Figure 6.37 shows the memory of a wallet node during the experiment in Figure 6.32. At
about 14:10, several wallet nodes ran out of memory and restarted. This can be seen directly
from Taler’s TPS, which decreases around the same time. Perhaps we could have achieved
a few more TPS in Taler if this had not happened. However, we decided not to check this be-
cause, first, the load of the experiment is not realistic and, second, we had already allocated
70 client nodes. Fortunately, this has not yet affected previous experiments, as we never
had that many wallet processes running 33. Although full experiments have not yet reached
this point, it could still become problematic as we examined older experiments and found
that memory was constantly growing. One solution we have found is to reduce the number
of iterations a wallet process performs so that it restarts more often and frees the memory,
but it may still be necessary to make the processes lighter.

Figure 6.37.: The memory usage of a wallet node during the experiment in Figure 6.32. We had 70 client nodes on which
we had to launch about 900 wallets each, since many more were needed to achieve more TPS (as fewer coins
were withdrawn per request). At roughly the same time the wallets run out of memory we see the Taler TPS
in Figure 6.32 decrease. Although the load is not very realistic, we still see this as new issue for improvement
in the wallet clients.

The other, more surprising issue we noticed was a difference in the number of requests re-
ported by the Nginx servers and those reported by Promtail (Figure 6.38). The number of
requests from Nginx is simply a counter of the Nginx process being exported to Prometheus,
where we cannot see the actual URLs. Therefore, we used Promtail to evaluate the request
statistics per endpoint from the Nginx logs. These statistics were used, among other things,
to calculate the number of Taler TPS (excluding batch withdrawals, for which we addedmet-
rics to the exchange). At first, we thought Promtail was the problem, since a single process
was responsible for all logs from our experiments. Butwhenwe couldn’t find anything in the
logs, we looked on the Nginx nodes. There we found that indeed rsyslog is the problem 34:

Jun 9 14:03:14 dahu−20 rsys l ogd : main Q : Reg : high a c t i v i t y −
s t a r t i n g 1 add i t i ona l worker thread ,
cu r r en t l y 1 a c t i v e worker threads .
[v8 .2102.0 t r y ht tps : / /www. r s y s l o g . com/ e /2439]

At the exact time this log message appeared (in /var/log/messages), the reported number
of requests started to diverge (Figure 6.38). We quickly went through the past snapshots
to see if this problem has been around for a while. Fortunately, it hasn’t been a relevant
problem yet. However, since it could obviously become one soon we started adding new

33In this experiment, there were 900 per node, which was required due to a completely different load situation
34We first log locally to rsyslog, since the logs are also sent to the NFS and not only to Promtail. Although Nginx supports

logging to remote servers, it was not possible to log directly to Promtail, as we got errors trying to do so.

66

6.4. Exchange Database

metrics to the exchange processes. These count the number of non-idempotent operations to
get around the unreliable logging statistics. However, the logs are still important to compute
various statistics for request times, etc., but for these we would not need all the log lines and
could analyze them using a sample of logs 35. This would in turn also reduce the snapshot
sizes for recovering experiments, since the Nginx logs are usually the largest.

The discovery of this problem also led us, in turn, to another problem in the wallet clients.
Based on the number of requests reported, we found that the command-line version of the
clients were not caching the results of the wire, terms, and keys endpoints. They were
requesting these endpoints again on each new iteration, which generated a tremendous
amount of unnecessary network traffic for Nginx. Fortunately, Nginx had respected the
Expires headers and did not forward the requests to the exchange. In the experiments here
(withdrawing 3 coins) we see 3.2 Gb/s of bandwidth on the Nginx nodes compared to 900
Mb/s on the exchanges, clearly a huge difference and thus also an issue to further improve
client performance.

Figure 6.38.: The deviating number of requests per second observed in our experiments. This is, of course, a problemwhen
measuring the TPS for Taler, since these are calculated from the logs. Fortunately, we identified this problem
before it became problematic for our experiments. In the experiment here (Figure 6.32), we had many more
requests because only 3 coins were withdrawn in a request (about 10,000 per second for each endpoint).
Fortunately, all previous results are still valid as we were able to verify this in our snapshots.

Figure 6.39.: The sum of network traffic on the respective nodes hosting wallets and Nginx proxies. While Nginx apparently
caches the responses to wire, terms, and keys, the CLI wallets do not yet do so. Fixing this issue could
further improve client performance (at least).

35Nginx conditional logging: https://www.nginx.com/blog/sampling-requests-with-nginx-conditional-logging/

67

https://www.nginx.com/blog/sampling-requests-with-nginx-conditional-logging/

6. Performance Results

6.4.11. Conclusion

We assumed too early that PostgreSQL could be the bottleneck. While we believe this to be
true in some cases, e.g. when we reach 65k DB TPS in our experiments, we now know that
this is not true for experiments where we only perform withdrawals. Since there, after an
‘obvious’ wirewatch bottleneck has been fixed, we no longer reach the DB limit. However,
there are still bottlenecks and behaviors that are not yet fully identified, e.g. why we still
achieve much different DB TPS than expected (e.g. in withdraw only). In the experiments
conducted, we also identified that there is quite a difference in the optimal number of ex-
change clients connected to the DB, while it was 120 for complete experiments for some
time, it increased again and is now 200. It could well be that we are limited by the num-
ber of exchange processes in our experiments, since we may need more, but are limited by
the optimal number of connections to the DB in the various loading situations. Again, we
have plenty of room for further investigation. Unfortunately, this does not include testing
another database implementation, as the combination of features required in Taler is only
available in PostgreSQL. But that’s not the only reason: there is simply too much SQL code
that would have to be changed to make it work in another DB. At least this was not an option
for this work yet.

6.5. Partitioning and Sharding

Partitioning in PostgreSQL is a way to split large tables into smaller ones. While the main
table is called partitioned table and has no physical memory, the smaller tables are then
called partitions and that is where the data is actually stored. This partitioning can be done
by defining a distribution key (also called a sharding or partitioning key), which PostgreSQL
uses to decide which partition to write data to. This should ultimately improve query perfor-
mance by allowing smaller tables to be searched instead of the full table (if partition pruning
is enabled - which is default 36). Declarative partitioning is used in PostgreSQL to create such
partitioned tables. This declaration must include one of the partitioning methods (Range,
List or Hash) and a partition key. [44]

An example of a partitioned table is shown in Listing 6.2, its visualization in Figure 6.40.

CREATE TABLE t a l e r (
id INTEGER ,
value VARCHAR(20)

) PARTITION BY RANGE(id) ;

CREATE TABLE t a l e r _ 1
PARTITION OF t a l e r
FOR VALUES FROM (1) TO (10) ;

CREATE TABLE t a l e r _ 2
PARTITION OF t a l e r
FOR VALUES FROM (1 1) TO (20) ;

Listing 6.2: Simple partitioned table that shows how partitions (using the range method) can be created with Post-
greSQL’s declarative partitioning. All rows inserted into the table taler are actually inserted into one
of taler_1 or taler_2, depending on which id is used in the inserted row.

36Partition pruning: https://www.postgresql.org/docs/14/runtime-config-query.html#GUC-ENABLE-PARTITION-
PRUNING

68

https://www.postgresql.org/docs/14/runtime-config-query.html#GUC-ENABLE-PARTITION-PRUNING
https://www.postgresql.org/docs/14/runtime-config-query.html#GUC-ENABLE-PARTITION-PRUNING

6.5. Partitioning and Sharding

TALER

ID VALUE

TALER_1

ID VALUE

1 taler

2 is

3 fast

TALER_2

ID VALUE

12 and

15 pricavy

16 friendly

Figure 6.40.: PostgreSQL’s partitioning visualized.
The table ‘TALER’ is divided into sev-
eral smaller partitions, which can be
located on different hard disks.

Shard 1

TALER_1

ID VALUE

1 taler

2 is

3 fast

Shard 2

TALER_2

ID VALUE

12 and

15 pricavy

16 friendly

Master

TALER

ID VALUE

Figure 6.41.: The natural extension of partitioning is
called sharding. It includes the reloca-
tion of partitions to separate servers to
ease the load on the master node.

Declarative partitioning is a relatively new concept in PostgreSQL (introduced in version 10)
and offers another advantage besides better query performance, namely that partitions can
be stored on separate disks [45].

Sharding is based on the same concept, with the difference that the partitions are now
located on a different server and are therefore also called foreign tables. Thus, a Post-
greSQL database can now be distributed horizontally, which further increases storage ca-
pacity. However, there are also some disadvantages, namely that there are no real UNIQUE
constraints except for the distribution key. UNIQUE constraints have to be added to each par-
tition separately, which results in the respective columns being unique only for each of the
partitions and not for the whole table [44]. Also, there is no longer a useful option for for-
eign keys, as we cannot reference a table on another database server. This is only partially
useful, as it would still be possible to point to a partition or replicated table on the same
node, but we cannot be sure that the data we need is there (except for replicated tables).

While there are multiple extensions which can be used to distribute a PostgreSQL database
acrossmultiple nodes, we decided to use to relatively new feature of PostgreSQL itself, called
the Foreign Data Wrapper (postgres_fdw) 37. Other extensions are at risk of being discon-
tinued, such as Postgres-XL 38 (although it is not officially stated, the last commit on source-
forge 39 is from 2016), or pg_shard 40 which was integrated in the Citus extension 41. Most
of the time, however, such extensions don’t support the latest version of PostgreSQL un-
til they’ve made a new patch, so they don’t support the latest features either, which could
become interesting. There are other extensions, but the problem remains the same.

6.5.1. Implementation

Citus offers a considerable number of features, one of which is the automatic creation of
child tables 42. However, this function is not available with postgres_fwd. Therefore, we
had to implement a similar function ourselves. We did this with simple SQL, mainly using
functions called when initializing the Taler database from taler-exchange-dbinit. The
following flags were added to the utility:
37postgres_fdw: https://www.postgresql.org/docs/13/postgres-fdw.html
38Postgres-XL: postgres-xl.org
39Postgres-XL Repo: https://sourceforge.net/projects/postgres-xl/
40pg_shard: https://github.com/citusdata/pg_shard
41Citus: https://citusdata.com
42Citus table creation: https://docs.citusdata.com/en/stable/develop/api_udf.html#create-distributed-table

69

https://www.postgresql.org/docs/13/postgres-fdw.html
postgres-xl.org
https://sourceforge.net/projects/postgres-xl/
https://github.com/citusdata/pg_shard
https://citusdata.com
https://docs.citusdata.com/en/stable/develop/api_udf.html#create-distributed-table

6. Performance Results

Master Node Flags

I -P <NUM>:
Create partitioned tables with NUM partitions.

I -F:
Create foreign servers instead of partitions (including foreign tables with suffixes 1-
NUM pointing to the remote tables on the shard nodes).

Shard Node Flags

I -S <NUM>:
Create tables on a shard with index NUM (creates tables with suffix NUM).

I -R <NUM>:
Drop the database on a shard node with index NUM (drops all tables with suffix NUM).

To avoid duplicate code, we created a function template (shown in Listing 6.3 and 6.4) that
allows us to create partitioned tables and partitions from the same table definition.

CREATE OR REPLACE FUNCTION c r e a t e _ p a r t i t i o n e d _ t a b l e (
IN t a b l e _ d e f i n i t i o n VARCHAR
, IN table_name VARCHAR
, IN ma i n _ t a b l e _ p a r t i t i o n _ s t r VARCHAR
, IN sha rd _ su f f i x VARCHAR DEFAULT NULL

)
RETURNS VOID
LANGUAGE p lpgsq l
AS $$
BEGIN

I F sha rd _ su f f i x IS NOT NULL THEN
table_name=table_name | | ’ _ ’ | | s h a r d _ su f f i x ;
m a i n _ t a b l e _ p a r t i t i o n _ s t r = ’ ’ ;

END I F ;

EXECUTE FORMAT(
t a b l e _ d e f i n i t i o n ,
table_name ,
ma i n _ t a b l e _ p a r t i t i o n _ s t r

) ;

END
$$;

Listing 6.3: Method added to common-0001.sql to create partitioned tables and tables on the shard nodes (if
shard_suffix is NULL, then a partitioned table is created with the partitioning method passed with
main_table_partition_str, else the table on the shard is created). The usage is shown in Listing 6.4.

CREATE OR REPLACE FUNCTION c r e a t e _ t a b l e _ w i r e _ t a r g e t s (
IN sha rd _ su f f i x VARCHAR DEFAULT NULL

)
RETURNS VOID
LANGUAGE p lpgsq l
AS $$
BEGIN

PERFORM c r e a t e _ p a r t i t i o n e d _ t a b l e (

70

6.5. Partitioning and Sharding

‘CREATE TABLE I F NOT EXISTS %I ‘
‘ (w i r e _ t a r g e t _ s e r i a l _ i d BIGINT ‘
‘ GENERATED BY DEFAULT AS IDENTITY ‘
‘ , w i r e _ t a r g e t _ h _ p a y t o ‘
‘ BYTEA PRIMARY KEY CHECK (LENGTH(w i r e _ t a r g e t _ h _ p a y t o)=32) ‘
‘ , p a y t o _ u r i VARCHAR NOT NULL ‘
‘ , kyc_ok BOOLEAN NOT NULL DEFAULT (FALSE) ‘
‘ , e x t e r n a l _ i d VARCHAR ‘

‘) %s ; ‘
, ‘ w i r e _ t a r g e t s ‘
, ‘ PARTITION BY HASH (w i r e _ t a r g e t _ h _ p a y t o) ‘
, s h a r d _ su f f i x

) ;

END
$$;

Listing 6.4: The new method for creating tables in the Taler database, shown here as an example with the table
wire_targets. This method can now be called on the master and the shard node(s). If the shard_suffix
is NULL, the partitioned table on the master node is created, otherwise a partition is created on the shard with
index shard_suffix (as shown in Listing 6.3).

Since not all methods and tables are needed on each node, we have written separate SQL
files which are concatenated into SQL files for the respective nodes (shard and master) as
soon as make is called. For example, the master must create the partitioned tables with a
partition method, the foreign partitions and the foreign servers that host these partitions.
However, only the tables that will serve as partitions must be created on the shards.

To initialize a sharded database the following steps must be performed:

Master Node

Before the distributed database can be initialized, some configuration values need to be set.
We decided to take a simple approach by using the same credentials and domain for all
shards. This should not be a problem since the databases will probably not be accessible
from the outside, but only through an Exchange on the same network. Therefore, we added
the following configuration options to taler.conf:

I SHARD_DOMAIN (section exchange):
The domain in which all shards are located. The shards must all match the pattern
shard-<N>.SHARD_DOMAIN, where N is the index of the respective shard. This index
must then also be used when initializing the shard database.

I SHARD_REMOTE_USER (secret section exchangedb-postgres):
The username that can be used to log in to the shard and access the partitions; this
must be the same for all shards and must be allowed for at least the remote master
node. 43

I SHARD_REMOTE_USER_PW (secret section exchangedb-postgres):
The password used to log in to the shard and access the partitions; it must also be the
same for all shards.

Once these values are configured, the following command can be run to create two foreign
servers and thus partitioned tables with two partitions each. Note that the command must
43PostgreSQL remote access: https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

71

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

6. Performance Results

be run as user postgres because postgres_fdw initially requires superuser privileges. The
correct permissions are granted to taler-exchange-httpd by the SQL code during initial-
ization.

$ sudo −u pos tg r e s t a l e r −exchange − db in i t −P 2 −F

This will create two foreign servers (shard-1.SHARD_DOMAIN and shard-2.SHARD_DOMAIN)
and all the tables including their foreign partitions named <table-name>_1 and <table-name>_2.
However, the foreign tables do not exist yet and must be created on their respective shards:

Shard Node(s)

This step can be done before or after the step that must be performed on the main node. It
is only important that it is performed before a query to the database is executed, otherwise
the query will fail.

shard-1:
$ sudo −u t a l e r −exchange −httpd t a l e r −exchange − db in i t −S 1

shard-2:
$ sudo −u t a l e r −exchange −httpd t a l e r −exchange − db in i t −S 2

The database is ready for use as soon as this command has been successfully executed on
all shards (plus the one on the master).

6.5.2. Results

While partitioning seemed to work well, we ran into problems with sharding. First, the over-
all TPS performance dropped. While we had about 13k TPS in Taler with a partitioned DB, it
was only about 9k when using the same architecture for sharding. Some initial experiments
showed a full network bandwidth utilization of 10 Gbps, with only about 300 TPS in Taler,
rendering it unusable. Our investigation of the problematic queries revealed that there was
one particular issue:

Suboptimal Queries

Shardingmay be difficult to set up, it requires quite a bit ofwork to transition anon-partitioned
schema to a partitioned one. This includes picking the right sharding (distribution) keys for
each table. Whilemost sources propose to take tenant based solution, this cannot be applied
to Taler, as it does not have a concept of accounts.

Tables should be partitioned in a way that queries require access to the smallest number of
partitions, usually achieved by having the WHERE clause should select on the partition key.
If this is not the case, PostgreSQL may need to scan each partition to compute the result,
reducing performance [44].

To enable partition-wise joins, the distribution keys must be those that appear in the join
condition and be exactly aligned, otherwise multiple partitions may need to be scanned to
compute the join.

72

6.5. Partitioning and Sharding

Denormalization

A first optimization we performed was to denormalize the database. For example, the wire-
_targets table had to be partitioned by h_payto, but some joins (and references) used the
wire_target_serial_id column. As a result, those queries had to scan each partition to
get the correct result. We changed the queries to use h_payto in joins instead of the serial
number, replacing the serial number by the h_payto in referring tables and in one place in
the protocol. To reduce the impact this had on storage space, we also changed the length of
h_payto to 32 bytes instead of 64.

However, it turned out that this kind of transformation did not always improve performance
as desired, and that the network loadwas still too high. The problemwas theway PostgreSQL
performs joins (see Listing 6.5). It may select all rows from a table and then remove the ones
that don’t match once both results are available, even if filtering one half of the join first
would have resulted inmuch better utilization of indices and singleton joins. Wefirst tried to
fix the queries by enforcing join sequences with explicit joins 44, hoping to be able to filter
results before the joins, but PostgreSQL continued to execute the queries in a suboptimal
order.

Materialized Common Table Expressions

Ultimately, we were able to fix the problem by using Common Table Expressions (CTEs) that
define temporary tables that exist only for the executed query [46]. The new query execution
with CTE is shown in Listing 6.6. Although the same could be achieved with sub-queries, we
chose to use CTEs because they are generally more readable and by using MATERIALIZED we
force PostgreSQL to execute the CTE first instead of ”optimizing” it inline. We must disable
inline optimization as that would often result in the same inefficient query plan that we get
with sub-queries or non-materialized CTEs [47]:

“ However, if a WITH query is non-recursive and side-effect-free (that is, it is a SE-
LECT containing no volatile functions) then it can be folded into the parent query,
allowing joint optimization of the two query levels. By default, this happens if the
parent query references theWITH query just once, but not if it references theWITH
query more than once. You can override that decision by specifying MATERIAL-
IZED to force separate calculation of the WITH query, […] ” [46]

Using CTEs with MATERIALIZED brings the necessary determinism to query execution, so
that we can be sure that a query plan is not slowed down by a bad estimate or unexpectedly
bad decisions by the query planner. Of course, this change is often only possible after the
denormalization described above has been performed, allowing the correct partitions to be
hit. Thus, with the MATERIALIZED approach, PostgreSQL accesses only one partition for
one or more where clauses and retrieves only the required rows from the remote partition,
drastically reducing the network load.

Figure 6.42 shows the effects of the query rewrites on a sharded database.

44Explicit joins: https://www.postgresql.org/docs/current/explicit-joins.html

73

https://www.postgresql.org/docs/current/explicit-joins.html

6. Performance Results

Figure 6.42.: The network traffic on the master node in a sharded database before and after the queries with materialized
CTEs. Before, it is constantly increasing because entire tables (which are constantly growing) are fetched
from the respective shards. The fix clearly allows the network load to be kept constant. Both figures were
created when 10 wallets were running and when we had 53 TPS in Taler.

74

6.5.
Partitioning

and
Sharding

EXPLAIN ANALYZE
SELECT kyc_ok , w i r e _ t a r g e t _ s e r i a l _ i d

FROM r e s e r v e s _ i n
JOIN w i r e _ t a r g e t s ON (w i r e _ s ou r c e _h _pay t o = w i r e _ t a r g e t _ h _ p a y t o)

WHERE r ese rve _pub= ’ \ xdf6bceef72ae1f37ccb7acae2ada7bf596df1f6fccd1f8526e2c43709836fbba ’ ;
QUERY PLAN

−−−
Nested Loop (co s t =0 .41 . . 10 .48 rows=1 width =9) (a c tua l time =0.086..0.093 rows=1 loops =1)
J o in F i l t e r : (r e s e r v e s _ i n . w i r e _ s ou r c e _h _pay t o = w i r e _ t a r g e t s . w i r e _ t a r g e t _ h _ p a y t o)
Rows Removed by Jo in F i l t e r : 1
−> Index Scan using r e s e r v e s _ i n _ 1 _ p k e y on r e s e r v e s _ i n _ 1 r e s e r v e s _ i n

(co s t =0 .41 . . 8 .43 rows=1 width =33) (a c tua l time =0.058..0.060 rows=1 loops =1)
Index Cond : (r ese rve _pub = ’ \ xdf6bceef72ae1f37ccb7acae2ada7bf596df1f6fccd1f8526e2c43709836fbba ’ : : bytea)

−> Append (co s t =0.00. .2 .03 rows=2 width =41) (a c tua l time =0.013 . .0 .022 rows=2 loops =1)
−> Seq Scan on w i r e _ t a r g e t s _ 1

(c o s t =0 .00 . . 1 .01 rows=1 width =41) (a c tua l time =0.012 . .0 .013 rows=1 loops =1)
−> Seq Scan on w i r e _ t a r g e t s _ 2

(c o s t =0 .00 . . 1 .01 rows=1 width =41) (a c tua l time =0.005..0.006 rows=1 loops =1)
Planning Time : 0.598 ms
Execut ion Time : 0.234 ms

Listing 6.5: Query execution of a join by PostgreSQL. It shows that both tables involved are scanned before the join is actually executed - this can be seen by the Rows
Removed by Join Filter statement. This is fatal for sharding if joins are not executed on the shard nodes, which is not possible here since the tables
involved are not sharded on the same column. So PostgreSQL has to get the tables from the shards to the master node and then execute the join locally. If this
happens multiple times, the network capacity is quickly exceeded. Clearly this query was not contributing much in either case as the whole table contains two
rows only, but the one shown in the appendix (Listing A.1 and A.2) is. (The query plan shown here is executed on a partitioned rather than a sharded database,
but the result remains the same) - Note: Explain shows an inverted tree and must be read from inside out (innermost node is executed first) a.

aExplain: https://www.postgresql.org/docs/13/using-explain.html#USING-EXPLAIN-BASICS

75

https://www.postgresql.org/docs/13/using-explain.html#USING-EXPLAIN-BASICS

6.
Perform

ance
Results

EXPLAIN ANALYZE
WITH r e s e r v e s _ i n AS MATERIALIZED (

SELECT wi r e _ s ou r c e _h _pay t o
FROM r e s e r v e s _ i n

WHERE rese rve _pub= ’ \ xdf6bceef72ae1f37ccb7acae2ada7bf596df1f6fccd1f8526e2c43709836fbba ’
)
SELECT kyc_ok , w i r e _ t a r g e t _ s e r i a l _ i d

FROM w i r e _ t a r g e t s
WHERE w i r e _ t a r g e t _ h _ p a y t o = (

SELECT wi r e _ s ou r c e _h _pay t o
FROM r e s e r v e s _ i n

) ;
QUERY PLAN

−−−
Append (co s t =8 .45 . . 10 .48 rows=2 width =9) (a c tua l time =0.091. .0.095 rows=1 loops =1)
CTE r e s e r v e s _ i n

−> Index Scan using r e s e r v e s _ i n _ 1 _ p k e y on r e s e r v e s _ i n _ 1 r e s e r v e s _ i n
(co s t =0 .41 . . 8 .43 rows=1 width =33) (a c tua l time =0.060..0.063 rows=1 loops =1)

Index Cond : (r ese rve _pub = ’ \ xdf6bceef72ae1f37ccb7acae2ada7bf596df1f6fccd1f8526e2c43709836fbba ’ : : bytea)
I n i t P l an 2 (re tu rns $1)

−> CTE Scan on r e s e r v e s _ i n r e s e r v e s _ i n _ 1
(c o s t =0.00. .0.02 rows=1 width =32) (a c tua l time =0.065..0.068 rows=1 loops =1)

−> Seq Scan on w i r e _ t a r g e t s _ 1
(c o s t =0 .00 . . 1 .01 rows=1 width =9) (never executed)

F i l t e r : (w i r e _ t a r g e t _ h _ p a y t o = $1)
−> Seq Scan on w i r e _ t a r g e t s _ 2

(c o s t =0 .00 . . 1 .01 rows=1 width =9) (a c tua l time =0.013 . .0 .015 rows=1 loops =1)
F i l t e r : (w i r e _ t a r g e t _ h _ p a y t o = $1)

Planning Time : 0.643 ms
Execut ion Time : 0.276 ms

Listing 6.6: Query execution when using CTEs, we can now clearly see that reserves_in is scanned first and then the result is used in the second phase to select from
wire_targets. Due to our previous change to include h_payto as join key instead of the serial_id only one partition is hit then. Thus drastically reducing the
network load.

76

6.5. Partitioning and Sharding

Materialized Indices

Similar problems occurred with queries such as recoup_by_reserve, however those could
not easily be fixed with this approach, as some joins cannot use the partition key. Thus, we
created something we named materialized indexes.

Let’s take the tables reserves_out and reserves, which are used in this query, as an exam-
ple. reserves_out is partitioned by h_blind_ev while reserve_pub is used for reserves.
If we now join those two tables like it was done initially in recoup_by_reserve:

SELECT *
FROM r e s e r v e s
JOIN r e s e r v e s _ ou t USING (r e s e r ve _uu id)

WHERE r ese rve _pub=$1 ;

Listing 6.7: Example query which performs bad because partition keys do not align and thus hits all partitions.

we will still end up scanning each partition of reserves_out even if we used materialized
CTEs, as h_blind_ev is not present in reserves (which is the partition key of reserves_out).
The usual approach would be to define an additional index on h_blind_ev, but PostgreSQL
does not allow indices to span partitions. However, the join would still have to hit multiple
partitions.

To overcome this problem, we added additional tables. We call these materialized indexes
as the tables are basically an index from the desired key to the partition key. These materi-
alized index tables contain two columns, one of each table, and provide a mapping for the
partitions. In the example above, the table looks basically like this:

CREATE TABLE r e s e r v e s _ o u t _ b y _ r e s e r v e (
r e s e r ve _uu id INT8 ,
h _ b l i nd _ e v BYTEA

) PARTITION BY HASH (r e s e rve _uu id) ;

Listing 6.8: The table we called materialized index to align partitions of reserves and reserves_out.

These materialized indexes are populated and unpopulated by triggers on INSERT, UPDATE
and DELETE in the respective main table (in this case reserves_out). Originally, we had
hoped that when joining these three tables, we could limit the number of partitions affected,
since the mapping is now given with the materialized index, e.g.:

77

6. Performance Results

WITH res AS MATERIALIZED (
SELECT *

FROM r e s e r v e s
WHERE r ese rve _pub=$1

)
SELECT *
FROM r e s e r v e s _ ou t ro

JOIN (
SELECT *

FROM r e s e r v e s _ o u t _ b y _ r e s e r v e
WHERE r e s e r ve _uu id = (

SELECT r e s e r ve _uu id
FROM r es

) robr
) ON (ro . h _ b l i nd _ e v = robr . h _ b l i nd _ e v) ;

Listing 6.9: Example query showing the usage of the materialized indexes to better match partitions.

However, at that time we did not know about PostgreSQL’s join behavior with distributed
tables.

Dealing With Non-Singleton Results

Specifically, since reserves_out_by_reserve returnsmultiple rows, we cannot use a direct
filter with equality. But once we do a JOIN or use WHERE IN, PostgreSQL does a join which
always scans all partitions (as shown before). However, when a direct filter with equality
can be used, the number of partitions hit and rows received can be minimized.

So we had to find another way for queries like this to hit only the needed partitions. We
solved this with SQL functions like the one shown in Listing 6.10.

CREATE OR REPLACE FUNCTION do _ r e c oup _by _ r e s e r v e (
IN res _pub BYTEA

)
RETURNS TABLE
(

denom_sig BYTEA ,
denomina t i ons _ s e r i a l BIGINT ,
coin_pub BYTEA ,
c o i n _ s i g BYTEA ,
c o i n _ b l i nd BYTEA ,
amount_val BIGINT ,
amount_frac INTEGER ,
recoup_t imestamp BIGINT

)
LANGUAGE p lpgsq l
AS $$

DECLARE
res _uu id BIGINT ;
b l i nd _ ev BYTEA ;
c_pub BYTEA ;

BEGIN

SELECT r e s e r ve _uu id
INTO r e s _uu id
FROM r e s e r v e s

78

6.5. Partitioning and Sharding

WHERE r e s e r v e s . r ese rve _pub = res _pub ;

FOR b l ind _ ev IN
SELECT h _b l i nd _ e v

FROM r e s e r v e s _ o u t _ b y _ r e s e r v e
WHERE r e s e r v e s _ o u t _ b y _ r e s e r v e . r e s e r ve _uu id = res _uu id

LOOP

SELECT robr . co in_pub
INTO c_pub
FROM r e c oup _by _ r e s e r v e robr

WHERE robr . r e s e r v e _ o u t _ s e r i a l _ i d = (
SELECT r e s e r v e s _ ou t . r e s e r v e _ o u t _ s e r i a l _ i d

FROM r e s e r v e s _ ou t
WHERE r e s e r v e s _ ou t . h _ b l i nd _ e v = b l ind _ ev

) ;

RETURN QUERY
SELECT kc . denom_sig ,

kc . denominat ions _ se r i a l ,
r c . coin_pub ,
r c . c o i n _ s i g ,
r c . co in _b l ind ,
r c . amount_val ,
r c . amount_frac ,
r c . recoup_t imestamp

FROM (
SELECT *
FROM known_coins
WHERE known_coins . coin_pub = c_pub

) kc
JOIN (

SELECT *
FROM recoup
WHERE recoup . coin_pub = c_pub

) rc USING (co in_pub) ;

END LOOP ;
END ;
$$;

Listing 6.10: The function we created to perform the query recoup_by_reserve. This implementation is in our opinion
the most efficient method in a partitioned database. Our general approach using MATERIALIZED does not
work here because we would have to perform a join instead of a single filter with equality, which as we know
fetches all rows from a shard. Therefore, this function splits the join into several single filter statements with
a loop whose results are returned at the end as a table. You might think that the last part of the function could
be pushed down to the shard for a join, since both recoup and known_coins are partitioned by coin_pub.
However, PostgreSQL only pushes queries down if they contain a WHERE clause, which unfortunately we don’t
have here [48].

Validation

First experiments using this query showed that it works well, but we have to keep in mind
that in the experiments the recoup table was always empty, which means that we still have
to investigate the performance when there is actually data. However, it is not so easy to
debug function calls with PostgreSQL, because in auto_explain or EXPLAIN ANALYZE gen-
erally only the function call is logged, not its content. However, it can still be logged by
setting the proper configuration:

79

6. Performance Results

LOAD ’ au to _ exp la in ’ ;
SET au to _ exp la in . l og _min _dura t i on = 0ms;
SET au to _ exp la in . l o g _ne s t ed _ s t a t emen t s TO t rue ;
SET au to _ exp la in . l o g _ v e r bo s e TO t rue ;

SELECT * FROM do _ r e c oup _ by _ r e s e r v e (’ \ x . . . ’) ;

Listing 6.11: These are the steps that need to be performed to log the statements executed within an SQL function in Post-
greSQL - shown here in an interactive PostgreSQL sessionwith psql. The generated output of auto_explain
can then be read from the PostgreSQL logs. Note that the queries are logged as independent queries but with
a CONTEXT referring to the function they belong to.

Slow Master Node

When we first tried sharding, we found that we achieved less TPS than using a single-node
database. While we were hoping to gain some performance, we only got to about 9k TPS in
Taler 45 (with 20k DB TPS in the master PostgreSQL instance and a CPU load of about 20%).
However, we were able to identify the problem relatively quickly by running the following
query on the shard servers:

SELECT wai t _ event , wa i t _ e ven t _ t ype , appl i ca t ion_name
FROM p g _ s t a t _ a c t i v i t y

WHERE s t a t e = ’ i d l e in t r ansa c t i on ’
AND wai t _ even t i s not NULL
AND datname= ’ t a l e r −exchange ’ ;

wa i t _ even t | wa i t _ e v en t _ t yp e | appl i ca t ion_name
−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−
Cl ientRead | C l i e n t | pos tg res _ fdw
Cl ientRead | C l i e n t | pos tg res _ fdw
Cl ientRead | C l i e n t | pos tg res _ fdw
Cl ientRead | C l i e n t | pos tg res _ fdw
. . .

Listing 6.12: The query executed to see what is slowing down our database in a sharded setup.

The output shows that the shards are mostly waiting in state ClientReads, which in Post-
greSQL means that the shards are waiting for the master to provide input [49].

We believe that the reason is that PostgreSQL is not able to push entire transactions to
shards based on some partition key, which would ease the load on the master node. As vari-
ous queries inherently involve two or more partitions, the master node remains responsible
for organizing the process of fetching the required rows from different shards and merging
them. Consequently, the shards are not used to offload a significant part of the computation,
and mostly wait for simple queries to be delegated to them. Consequently, due to the extra
latency required to communicate with the shards, sharding lowers the TPS seen in Taler.

However, we should stress that we introduced horizontal distribution not only to improve
performance, but also to increase the storage capacity of our database. After all, in a produc-
tion system running a large number of transactions for many years might reach the limit
of hard disks that can be installed on a single node. Thus, it is important that sharding is
possible to scale the storage capacity, even if it does not help scale the transaction rate.
45At the time we had about 13.6k in a partitioned setup

80

6.5. Partitioning and Sharding

6.5.3. Final Performance

While we have found that sharding is not as powerful as we would have liked, it can still
be handy if one considers the amount of data that has to be stored. We also managed to fix
major problems with improving the queries to the point where only the necessary shards
are hit and there the data is filtered before transfer. This way we can ensure that our imple-
mentation scales as well as possible with a single database master.

The final results of our approach are shown in Table 6.3. Most of the TPSweremeasuredwith
nodes in the Dahu cluster, but for some we had to use Gros because Dahu does not provide
enough nodes. In these experiments, we also changed the number of connected clients
(exchanges) to see the impact on TPS. We found that for a partitioned DB with a single node,
120was best, while 80 proved to be the best performing for the sharded setup. 46 This is also
the configuration used to measure the numbers below. Please also note that these numbers
were measured using a rather short time window and not over a longer duration.

Partitions Single Node Distributed
(Partitioned) (Sharded)

0 23.4k
1 23.4k 11.1k
2 23.4k 10.8k
4 23.2k 10.1k
8 22.8k 9.8k
16 22.8k 8.8k
32 21.5k 6.7k 47

64 17.5k -

Table 6.3.: The scalability of the database implementation of GNUTaler is shown by the number of TPS in Taler (using batch-
withdraw - number of coins signed on each successful request to /batch-withdraw plus number of successful
requests to /deposit). We can clearly see that partitioning scales quite well, while sharding is fine up to 8 shards.
However, the problem with sharding is not the queries as we could not see many slow queries above 50ms in
both cases, but the master node that has to deliver data to the shards and fetch data from there to perform
further actions.

We can see that the overhead of sharding is quite remarkable when comparing the TPS for
just one partition. With sharding, it is less than 50% of that of a single node. Therefore, it
might be necessary to investigate further possibilities for better partitioning of the database
to achieve a query push-down to the shard nodes.

46These numbers may look different now that performance has increased and we have determined that 200 exchanges is
optimal when we reach 28k+ TPS with Taler.

47Measured using the Gros cluster, for comparison: with 16 shards we achieved 7.2k TPS there.

81

7. Additional Results

7.1. Transaction-Load Distribution

Many non-uniform real-world distributions of human-created systems follow Zipf’s Law. We
suspect that as a first approximation this may also be true for banking transactions, or at
least that Zipf’s Law yields a distribution suitable for realistic benchmarking of payment
systems. When applying Zipf’s law to transactions, this means that if there are 100 mer-
chants, there will be one merchant who receives say 100 payments over a certain period of
time. Then, the second-largest merchant would receive half of what the first receives, i.e.
50, the third a third (33), and so on. [50]

In order to obtain performance results that reflect real-world problems, wehave extended the
wallet clients with another benchmark that can generate such a distribution. This is particu-
larly interesting because this distribution leads to a spiky rather than a uniform transaction
load. The algorithm will randomly select the merchant to pay at each deposit, weighted by
Zipf’s law. An example distribution generated by this algorithm is shown in Figure 7.1 and
7.2.

As expected, we have not noticed any change in GNU Taler’s performance with this payment
receiver distribution. 1

The results of these experiments are shown in Figure 7.3, Figure 7.4, and Figure 7.5. Note,
however, that the achieved TPS is now affected by the poorly performing aggregator (of
which there was only one at the time those figures were recorded), which pushes our TPS to
about 18-19k. 2 For non-uniform selection, we randomly selected a merchant ID from 1000
IDs using the Zipf algorithm described above and a random algorithm (Math.random()).

The reason we did not see an impact on performance is mainly because we are not using
an account-based system, where a row in the database would need to be updated with the
new balance for each transaction. The problem with the account-based approach is that
when a merchant receives a payment, their balance and the customer’s balance must be
updated. While this is not a problem for the customer since it is only one transaction, it can
be problematic for the merchant row: if the merchant receives many payments at once, all
but one will fail due to database serialization errors. In this case, the transactions would
have to be retried but may fail again if other transactions involving the same merchant are
again being attempted at the same time. This may result in transactions repeatedly failing
which can drastically degrade performance.

However, this is not a problem with the implementation of the Taler exchange, since the
deposits are not made to an account, but by updating a coin, which means that there are
no conflicts at that time. Later, many deposits are aggregated into a single transfer to the
target account. However, here the query is partitioned by time from concurrent incoming
1In the majority of the experiments, we even had only one merchant account which received all payments.
2This was measured when we reached about 23.5k Taler TPS.

83

7. Additional Results

Figure 7.1.: Result of the algorithm used in bench3, which randomly selects a merchant weighted according to Zipf’s law.
These two figures show the same result of ten million draws from 100 merchants on a linear and log-log scale.
The y-axis (Count) reflects the number of times a merchant with a given ID (x-axis) was selected to be paid. The
result of the integration in the benchmarks is shown in Figure 7.2.

Figure 7.2.: Number of payments (deposits) to each account in a benchmark. We see that the Zipf distribution of the al-
gorithm we created works as expected. The information to display this panel in Grafana is retrieved from the
logs of the taler-fakebank, which records all transfers initiated by the taler-exchange-transfer.

transactions and runs per merchant, thereby again ensuring that there is no possibility of a
conflict.

There is still one more task to complete which have not yet done, as the aggregator query
is not yet optimized and the partitions are not yet set up optimally: We saw that the aggre-
gator was able to achieve about 33k TPS on a single system. We would like to see how it
performs with different payment distributions combined with different numbers of shards
and processes, as this is more likely to affect the performance of how quickly a merchant re-
ceives their payments than the TPS of the system (which we have shown is not affected), as
the aggregator is sharded by account, among other things. This means that it will process
an account until it is finished aggregating that account. Multiple accounts with different
transaction amounts may therefore affect the completion time.

84

7.1. Transaction-Load Distribution

Figure 7.3.: The TPS when all payments are made to a single account (merchant-1). In general, all of our experiments have
been like this, making this our starting point for the next set of graphs. The merchant counts show the number
of payments to each merchant that are logged by the bank once the transfer process initiates the aggregated
transfers created by the Aggregator.

Figure 7.4.: The TPS given a random selection from 1000 accounts to pay to. It can be seen that there is no difference in
the TPS (except for a negligible difference due to the use of different nodes in a separate allocation). The same
is true for the Zipf distribution in Figure 7.5.

Figure 7.5.: The TPS when using a random Zipf’s Law weighted selection from 1000 accounts to pay to. As in Figure 7.4,
this has no effect on the TPS.

85

7. Additional Results

7.2. Auditor Inclusion

To see how well Taler and especially the PostgreSQL database work with replication, we
also included the Auditor. To do this, we enabled logical replication 3 to another node in
Grid’5000. As we had hoped, the auditor did not cause any performance degradation; there
was a slight, almost imperceptible increase in CPU load on the DB node, shown in Figure 7.7,
and slightly more network load, visible in Figure 7.8. However, the TPS for Taler remained
the same, which is reflected in the referenced figures by the number of requests per second.
Butwe could see that the replication is not that fast to be replicated in real time, whichwould
mean that the auditor does not always see the latest changes (see Figure 7.6). This could
possibly be remedied by further research, such as explained in a post on severalnines 4, but
this is no longer part of this work. However, under real-world conditions, we would probably
not need to handle the TPS peaks for an extended period of time, but only for short periods
of time, such as Black Friday. Hence, the replication should be able to keep up except for
some peak loads.

Note that this experiment was performed on nodes in the Gros 5 cluster, which are similar in
performance to the nodes in Dahu (measured with pgbench), since no free node was avail-
able there at that time. We also reached the TPS maximum of about 13.6k in Taler, with a
slightly higher CPU utilization (see figures), which still makes this experiment comparable
to the others.

Figure 7.6.: The DB sizes of Exchange and Auditor compared to the number of requests per second. It is clear that Auditor
lags behind Exchange in replication when we are at maximum TPS in Taler. This is easy to see because the
replication process still continues when the Exchange DB has long since stopped growing. Some configuration
values of PostgreSQL might provide a possibility to fix this, but this remains a task for further work.

7.3. Loki Performance

At some point, as the experiments reached higher TPS, we realized that our dashboards were
getting too slow. The bottleneck was quickly identified as Loki. It had to parse large chunks
of log volume every time an update was requested and compute the metrics we needed. This
quickly hit a timeout when we reached about 10k TPS and Loki had to parse gigabytes of

3Logical Replication: https://www.postgresql.org/docs/current/logical-replication.html
4Blog about PostgreSQL replication lag: https://severalnines.com/database-blog/what-look-if-your-postgresql-

replication-lagging
5Gros cluster: https://www.grid5000.fr/w/Nancy:Hardware#gros

86

https://www.postgresql.org/docs/current/logical-replication.html
https://severalnines.com/database-blog/what-look-if-your-postgresql-replication-lagging
https://severalnines.com/database-blog/what-look-if-your-postgresql-replication-lagging
https://www.grid5000.fr/w/Nancy:Hardware#gros

7.4. PostgreSQL Query Analysis

Figure 7.7.: The left side of this figure shows the CPU load of the Exchange database node when there is no replication,
while on the right side replication to the Auditor server is running. Almost no change is visible, but the load
has increased by a maximum of 1%. This shows us that replication should not be a problem even with higher
CPU load. Note that this experiment was placed in the Gros cluster rather than Dahu, which is why we can see
a CPU load of 40% rather than 25%.

Figure 7.8.: The right part of this figure shows the increase in the total bandwidth of the DB node, which has increased by
120 Mb/s compared to the left side, where no replication takes place. Note that most of this increase is limited
to outgoing traffic, as replication data is sent to the auditor but not much additional data is actually received.
This figure also clearly shows that the number of requests per second is the same in both cases (with the same
number of wallets running), which also reflects the TPS in Taler.

proxy logs to calculate TPS counts and request time statistics. While researching, we found
out that this problem can be solved quite easily. Promtail can be configured to calculate
custom statistics by calculating them right when the log lines are received using pipeline
stages (Appendix Listing A.3). These metrics can then in turn be retrieved by Prometheus,
while the actual logs continue to be sent on to Loki.

7.4. PostgreSQL Query Analysis

When we had multiple slow queries to analyze and improve, it quickly became tedious to
search through PostgreSQL’s entire log file to find the right query and understand its execu-
tion plan created by auto_explain. To simplify this process, we wrote a Python script that
automatically scans the logs for log statements that indicate queries and their parameters.
Prior to this script, we had to dump the entire database, find the parameters needed for a
query by searching the database, and thenmanually run the queries to customize them. The

87

7. Additional Results

script was then written to automate this process and analyze the performance of the various
prepared statements. Since many of them require parameters to be manually searched, we
could not simply read the statements from the C source code. Therefore, we decided to write
verbose PostgreSQL logs containing all executed instructionswith parameters. Thus, all that
is needed for the script is a pre-filled database and logs that contain the necessary output.
To achieve this, we pre-filled the database with some data by running an experiment. Then
we disabled unnecessary logging and enabled statement logging with log_statement=all.
Then we ran only one wallet to get a sample of queries. Once the database and logs were
saved locally, the script could be run. To still manually check some queries, it is possible to
specify the query instead of a log file. Or one could simply change a statement of interest in
the log directly.

The script summarizes various statistics extracted from EXPLAIN ANALYZE, such as how
many partitions were hit by a query, how long it took, or which non-indexed scans were
run. This makes it easier to compare two different queries with the same output result. The
analysis of the queries for sharding was particularly interesting, since we did not have the
perfect sharding key and had to optimize the queries to address as few shards as possible to
minimize network load. An example output can be seen in Listing 7.1.

For more detailed analysis, the script generates a file for each query executed, containing
the full plan in a more readable form as EXPLAIN ANALYZE.

However, this script is not as effective for functions because the logs contain only the func-
tion call statement.6 The execution of explain analyze for such an instruction therefore does
not contain any usable information other than the query execution time.

name t (ms) act −rws sub−q−rws p r t s n− idx
4 _ g e t _ r e s e r v e s _ o u t 0.176 0 5 3 (2) 1
5 _ r e c oup _ b y _ r e s e r v e 1056.125 0 4 2 (8) 3
6 _ c l o s e _ b y _ r e s e r v e 0.056 0 0 1 (2) 1
7 _ c a l l _w i t hd r aw 7.626 1 0 0 (0) 0

Listing 7.1: Sample output from explain-analyze.py listing the number and name of the query, the time spent, the
actual rows returned, the total number of rows returned by subqueries, the number of partitions hit, and
the total number of non indexed scans. The numbers in parentheses indicate the number of partitions
that are hit when the entire query is run, e.g. when some filters have a match (however, this also include
the number of partitions filtered by our materialized CTE approach as described in Section 6.5).

6Unfortunately, there is no similar option here as log_nested_statement in explain analyze. With log_statements,
PostgreSQL only logs the explicitly executed statements.

88

8. Future Work

Wewill now summarize key points that might enable a single exchange deployment to reach
our original goal of 100,000 TPS, based on the various findings in this thesis and avenues
we had to leave unexplored.

8.1. Exchange

OpenSSL RSA

As we have seen, the current implementation of RSA cryptography is too slow for the high-
performance application of Taler, especially already for the load generation logic in the wal-
lets. While we were able to reduce the key sizes to 1024 bits in our experiments, one would
want at least 2048 bits in production. To limit the number of exchange nodes required to
handle the 2048 bit load and to be able to generate load with 2048 bits with a reasonable
amount of resources, we suggest changing the implementation and to either use the much
faster OpenSSL implementation instead of Libgcrypt, or to modify Libgcrypt taking inspira-
tion from OpenSSL.

Batch-Withdraw Parallelization

The current implementation of batch withdrawal is sequential, meaning that the RSA sig-
natures are performed sequentially, even if many CPU cores are available. Thus, latency of
batch withdrawals could likely be significantly reduced by parallelizing the process to sign
coins.

Key Sharing

Since we need multiple exchange nodes to achieve the desired performance, we need to
distribute the key material among the nodes. One exchange node must be responsible to
generate keys, and the othersmust then receive thismaterial to accomplish their task. Since
the experiments lasted only a short time, we could simply exchange the keys there via NFS
and instruct all but one exchange to wait until the keys were generated before starting.

However, this is not a production-quality design, as the keys rotate when the exchanges are
used for an extended period of time. Wewill need to implement rotation in a sane waywhere
one exchange is explicitly made responsible for this task, while the others will be instructed
to securely obtain keys from the master exchange. Ideally, there would also be a fallback
mechanism that handles the case where the master exchange is not operational at the time
the keys need to be rotated.

89

8. Future Work

Metrics

Currently, the metrics are reported by each individual Exchange process, which is why each
httpd process has to listen on its own port. Such a setup is not suitable for production
use, where metrics like TPS are certainly of interest. Since these are now measured by the
exchange, it might be a good idea to implement metrics counters in a shared store where all
exchange processes can increment the same counter. This would allow a single port for all
processes and also prevent counter resets due to exchange restarts.

8.2. Exchange Database

Query Performance

Although we were able to improve the query performance significantly, there is always room
for improvement. The current implementation is good as far as slow queries are concerned,
as there were only a few over 50ms in experiments.

Nevertheless, one should consider implementing queries using PostgreSQL’s C language
functions 1 to further improve performance. This may reduce the CPU load on the database,
and nail down access partitions on shards, and possibly even allow us to push down more
of the load to the shards.

However, such a C implementation should probably be reserved for rare situations where
the SQL implementation is too slow, as it would significantly increase the required effort to
properly deploy an exchange.

Sharding

We have achieved that sharding now works with constant network load and acceptable per-
formance. However, we had hoped to achieve better performance than with a single node
since we could offload operations to shards. While we were able to distribute IO, we were
not able to improve general performance: since the master node is still responsible for joins
it has to fetch data (sometimes multiple times) from the shards and merge them locally.
Additionally, we lost TPS due to the newly added latency to the shards. By making further
adjustments to the schema and queries, one might be able to move the queries entirely to
the shards, which could lighten the load on the master, and thus hopefully improve perfor-
mance.

Batch Deposit

We have introduced batch withdrawal and shown that it is beneficial for TPS and I/O load.
Changes like this can also be applied to other endpoints, especially deposit, which currently
deposits each coin sequentially. Like with batch withdraw, such a change may also slightly
reduce bandwidth as the individual requests do contain some redundant information.

1C language functions: https://www.postgresql.org/docs/current/xfunc-c.html

90

https://www.postgresql.org/docs/current/xfunc-c.html

8.3. Auditor

Aggregator

As described earlier, we did in most cases not use the aggregator because the queries were
not yet aligned and optimized for partitions. Currently, there is a large query (called “ag-
gregate”) that does everything in one big SQL statement, but therefore can be rather slow,
scans multiple partitions and may generate serialization errors without proper partitions.

This query needs to be placed in a function like we did with recoup_by_reserve (or directly
in a C language function) and rewritten to prevent it from unnecessarily retrieving tables
from all partitions before joins. Further, we need to change the partition method on ma-
terialized indexes for the deposit helper tables (deposits_by_ready and deposits_for_-
matching). The partition method is currently HASH for simplicity, and should be changed
to RANGE. These tables are partitioned by deadlines. The deadlines are timestamps signal to
the aggregator when a transfer to a merchant can be initiated, for example when the refund
period has expired. This means that the aggregator will only handle rows of a table where
the deadline is in the past. If we now create the partitions by range on this deadline, we
ensure that the aggregator only hits rows that are no longer accessed by any other operation
from the exchange. Furthermore, after the aggregator is done, the respective partition can
be deleted, because it will not be used anymore.

However, if we now switch to range, partitionsmust be created continuously for future trans-
actions, since we cannot generate partitions for all possible time intervals into the future.
The number of partitions, the duration of the deadline respectively, is also configurable, as
this determines how long a merchant has to wait for his payment after the wire deadline.
A small interval would result in a potentially large number of partitions. The creation and
deletion of these partitions must therefore run automatically in the background. This could
be solved by an SQL function that is triggered when entries would be placed into a special
“future” partition (beyond the normal range of partitions). It would then have to create
the required partiton(s) and migrate all entries from the “future” partition into the newly
created partitions.

8.3. Auditor

While we have included the auditor in our experiments and shown that it does not have a
large impact on Taler’s performance, we have found that replication lags behind the main
database in high load situations. This is probably not a problem for most cases, since a
payment system is not expected to be constantly at peak load, improving replication speed
might still be interesting, especially in combination with shards. By replicating individual
shards, one might be able to improve the replication speed, and thus the timeliness of the
auditor.

Another issue is that the current implementation of the auditor itself is limited in its paral-
lelism. Thus, even if the database replication were faster, the CPU utilization of the auditor
itself would likely cause the auditor to lag behind the exchange. Here, parallel verification
of signatures may go a long way towards improving auditor performance.

Finally, we did not investigate to what extent the auditor’s SQL queries themselves might be
suboptimal. In particular, the auditor makes use of serial numbers of records in tables to
organize its work. This could be good as it may enable the auditor to efficiently download
work from the various shards in parallel, or bad if a query unnecessarily hits many shards.

91

8. Future Work

Thus, the SQL queries of the auditor should also be investigated.

8.4. Additional Transactions

At present, the experiments have not yet been carried out with all types of Taler transac-
tions. Specifically, refunds and recoup operations have not yet been taken into account.
While we do not expect a fundamental change, these transactions may again require spe-
cific optimizations to be performed. Naturally, it would be good to know how (un)common
these operations would be in practice to ensure that the benchmark is realistic.

Another key issue to be considered is transactions that arise when handling (client) fail-
ures. For example, when a client attempts to double-spend a coin, the exchange generates
an error message that proves the double-spending. Some of the queries to generate error
messages involve returning complex data structures, and hence the queries can sometimes
be rather complicated (see our discussion on recoup-by-reserve, which is an example for
such a query). While errors should be rare in normal production, an adversary trying to
perform a denial-of-service attack may deliberately issue requests that result in expensive
queries. Thus, all queries of the system should eventually be checked for worst-case perfor-
mance, and not only the “happy path” queries we considered in this work.

8.5. Wallet Clients

We have found in many cases that the wallets do not work well with longer signature peri-
ods and more denominations, as they cannot check the retrieved data in a constant time.
This should not be a problem for real deployments, as a customer is likely to have only one
wallet running at a time. Still, making themmore powerful especially for a large number of
denominations would be a place for improvement. Specifically, it might be helpful to only
retrieve the denominations that are urgently required, rather than all of them for the next
two years.

We also measured the time it takes a wallet to perform the withdraw and deposit opera-
tions. To do this, we took an idle node with no task and ran the script bench1 with different
amounts for withdrawal and deposit while having 23k TPS in Taler. In doing so, we mea-
sured the following results:

92

8.6. Merchant

KUDOS Withdraw Batch-Withdraw Deposit
8 1.8 s 1.8 s 2.6 s
10 2 s 2 s 2.6 s
20 2 s 2 s 2.6 s
50 2.2 s 2 s 2.7 s
100 2.8 s 2 s 2.8 s
200 3.8 s 2 s 3.5 s

Table 8.1.: The time taken by the wallets to execute each operation with the specified KUDOS amount. Note that for bench1
this includes multiple HTTP requests for all operations as well as refreshing in the deposit phase. All of these
numbers were measured when we had an average of 1.63 ms for reserves, 82 ms for batch withdrawals (which
were used to generate the main load), and 65 ms for deposits (plus 69 ms for coins-melt and 76 ms for refresh-
reveal) as Nginx response times.

Given the request time reported by Nginx and the round-trip times of about 12 ms to the
proxy and the bank, we can see that muchmore time is needed to perform the actions on the
clients, which probably indicates that they can be further improved here as well. However,
we also found that the wallets do not yet cache the responses to wire, terms, and keys.
These queries are also made in every withdrawal. Eliminating these requests could at least
reduce withdrawal times.

8.6. Merchant

In our experiments, we did include variousmerchant accounts to which wemade payments,
but the payments were not yet made to the individual merchants. This feature requires
the wallets in the benchmark to create orders and pay those orders directly through the
merchant. While the merchant is already included in the setup, and ready to create orders,
the Wallets are not capable of creating these orders at the moment. However, we anticipate
that the merchants will become a bottleneck fairly quickly, as there are likely to be a lot of
unoptimized queries that need to be addressed.

93

9. Conclusion

Performance tuning is always a game of whack-a-mole, where removing one obstacle imme-
diately leads to the next, with the danger of looking in the wrong place. Still, we identified
and fixed various bottlenecks and made several improvements in the GNU Taler software,
such as introducing batch withdrawals. But there were also a lot of problems with a rather
unexpected component: the load-generating clients. Thewallets kept introducing newprob-
lems that affected our experiments more than expected, leaving them in need of improve-
ment almost as much as the main logic of the exchange. We have now also found that our
monitoring system is reaching its limits with excessive logging, certainly a problem that not
everyone struggles with. That said, the database is a key issue for Taler scalability, though
we expected that too soon.

We have shown that GNU Taler can already process nearly 30,000 transactions per second
with a single exchange, using a setup that is as close to reality as possible. This includes the
distributed setup, non-uniform load generation, and state-of-the-art encryption methods
such as TLS. However, the experiments themselves were not yet very realistic, lasting only
about an hour or two and therefore showing more of what Taler can handle in peak load
situations. In some places, we were even forced to relax the requirements a bit to further
improve performance even with limited resources, for example, the RSA key size. But in the
end, we identified many aspects that will help to improve performance even more in future
refinements.

Nevertheless, we already know that Taler scales well in a distributed setup and that a real-
world deployment would require only a few exchanges per continent. In Europe, this could
mean one exchange for each country in a well-connected city (e.g., Paris, Frankfurt, Zurich),
all audited by a trusted authority such as the European Central Bank. Such a facility would
certainly reach more than 100’000 TPS, but at the cost of some privacy, since payments
could then be linked to countries.

95

96

Declaration of Authorship

I hereby declare that I have written this thesis independently and have not used any sources
or aids other than those acknowledged.

All statements taken from other writings, either literally or in essence, have been marked
as such.

I hereby agree that the present work may be reviewed in electronic form using appropriate
software.

June 15, 2022
M. Boss

97

Bibliography

[1] Nir Kshetri. The economics of central bank digital currency [computing’s eco-
nomics]. Computer, 54(6):53–58, 2021. Available at https://ieeexplore.ieee.org/
document/9447413 [07.12.2021].

[2] Grid’5000. Grid’5000 introduction, 2022. Available at https://www.grid5000.fr
[13.06.2022].

[3] Florian Dold. The GNU Taler System: Practical and Provably Secure Electronic Payments.
PhD Thesis. PhD thesis, University of Rennes 1, 2019. Available at https://taler.net/
papers/thesis-dold-phd-2019.pdf [04.06.2022].

[4] GNU Taler. Gnu taler: Features, 2022. Available at https://taler.net/en/features.html
[04.06.2022].

[5] Jim Cunha, Robert Bench, James Lovejoy, Cory Fields, Madars Virza, Tyler Fred-
erick, David Urness, Kevin Karwaski, Anders Brownworth, Neha Narula. Project
hamilton phase 1 a high performance payment processing system designed for cen-
tral bank digital currencies. Technical report, Federal Reserve Bank of Boston and
Massachusetts Institute of Technology Digital Currency Initiative, Feb 2022. Avail-
able at https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-
Phase-1-Whitepaper.pdf [05.05.2022].

[6] James Lovejoy, Cory Fields, Madars Virza, Tyler Frederick, David Urness, Kevin
Karwaski, Anders Brownworth, Neha Narula. A high performance payment processing
system designed for central bank digital currencies. Technical report, Federal Reserve
Bank of Boston and Massachusetts Institute of Technology Digital Currency Initiative,
Feb 2022. Available at https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/
t/61fc25f91a0df9037488eb7d/1643914745989/Hamilton.Whitepaper-2022-02-02-FINAL2.pdf
[15.04.2022].

[7] ECB. Eurosystem report on the public consultation on a digital euro. Technical report,
European Central Bank, Apr 2021. Available at https://www.ecb.europa.eu/pub/pdf/
other/Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.en.pdf
[15.04.2022].

[8] People’s Bank of China. Progress of research & development of e-cny in china. Tech-
nical report, People’s Bank of China, Jul 2021. Available at http://www.pbc.gov.cn/en/
3688110/3688172/4157443/4293696/2021071614584691871.pdf [05.05.2022].

[9] Ashutosh Pandey. China heats up digital currency race with the e-cny debut
at olympics, Feb 2022. Available at https://www.dw.com/en/china-heats-up-digital-
currency-race-with-e-cny-debut-at-olympics/a-60701261 [05.05.2022].

[10] Sveriges Riskbank. e-krona, 2022. Available at https://www.riksbank.se/en-gb/
payments--cash/e-krona/ [05.05.2022].

99

https://ieeexplore.ieee.org/document/9447413
https://ieeexplore.ieee.org/document/9447413
https://www.grid5000.fr
https://taler.net/papers/thesis-dold-phd-2019.pdf
https://taler.net/papers/thesis-dold-phd-2019.pdf
https://taler.net/en/features.html
https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/t/61fc25f91a0df9037488eb7d/1643914745989/Hamilton.Whitepaper-2022-02-02-FINAL2.pdf
https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/t/61fc25f91a0df9037488eb7d/1643914745989/Hamilton.Whitepaper-2022-02-02-FINAL2.pdf
https://www.ecb.europa.eu/pub/pdf/other/Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.en.pdf
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf
https://www.dw.com/en/china-heats-up-digital-currency-race-with-e-cny-debut-at-olympics/a-60701261
https://www.dw.com/en/china-heats-up-digital-currency-race-with-e-cny-debut-at-olympics/a-60701261
https://www.riksbank.se/en-gb/payments--cash/e-krona/
https://www.riksbank.se/en-gb/payments--cash/e-krona/

Bibliography

[11] Sveriges Riskbank. e-krona pilot phase 2. Technical report, Sveriges Riskbank, Apr
2022. Available at https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/
e-krona-pilot-phase-2.pdf [05.05.2022].

[12] Sveriges Riskbank. e-krona pilot phase 1. Technical report, Sveriges Riskbank, Apr
2021. Available at https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-
krona-pilot-phase-1.pdf [05.05.2022].

[13] Stig Johansson Hanna Armelius, Gabriela Guibourg and Johan Schmalholz.
E-krona design models: pros, cons and trade-offs, 2020. Available at
https://www.riksbank.se/globalassets/media/rapporter/pov/artiklar/engelska/2020/
200618/2020_2-e-krona-design-models-pros-cons-and-trade-offs.pdf [08.05.2022].

[14] Ananya Kunar. A report card on china’s central bank digital currency: the e-cny, Jan
2022. Available at https://www.atlanticcouncil.org/blogs/econographics/a-report-card-
on-chinas-central-bank-digital-currency-the-e-cny/ [05.05.2022].

[15] Daniela Mechkaroska, Vesna Dimitrova, and Aleksandra Popovska-Mitrovikj. Analy-
sis of the possibilities for improvement of blockchain technology. , pages 1–4, 11
2018. Available at https://www.researchgate.net/publication/330585021_Analysis_of_the_
Possibilities_for_Improvement_of_BlockChain_Technology [16.05.2022].

[16] Andre Rocha. Postgresql load tuning on red hat enterprise linux, Apr 2022. Avail-
able at https://www.redhat.com/en/blog/postgresql-load-tuning-red-hat-enterprise-linux
[24.04.2022].

[17] Postgres. Postgresql wiki, Sep 2020. Avaliable at https://wiki.postgresql.org/wiki/
Performance_Optimization [24.04.2022].

[18] leOpard. Pgtune, Apr 2022. Available at https://pgtune.leopard.in.ua [24.04.2022].

[19] Kumar Vibhor. Pgbench: Performance benchmark of postgresql 12 and edb ad-
vanced server 12, May 2020. Available at https://www.enterprisedb.com/blog/pgbench-
performance-benchmark-postgresql-12-and-edb-advanced-server-12 [24.04.2022].

[20] Swapnil Suryawanshi. Comprehensive guide on how to tune database pa-
rameters and configuration in postgresql, Dec 2019. Available at https:
//www.enterprisedb.com/postgres-tutorials/comprehensive-guide-how-tune-database-
parameters-and-configuration-postgresql [24.04.2022].

[21] Cristian Ruiz, Salem Harrache, Michael Mercier, and Olivier Richard. Reconstructable
Software Appliances with Kameleon. Operating Systems Review, 49(1):80–89, 2015.
PDF: https://hal.archives-ouvertes.fr/hal-01334135/file/Reconstructable_software_
appliances_with_kameleon.pdf.

[22] imec. jFed Experiment Specification. Available at https://jfed.ilabt.imec.be/espec/
[08.12.2021].

[23] brandur. How tomanage connections efficiently in postgres, or any database, Oct 2018.
Available at https://brandur.org/postgres-connections#concurrency-limits [07.12.2021].

[24] jjanes. How can i find the source of postgresql per-connection memory leaks?, Nov
2018. Available at https://dba.stackexchange.com/a/222815 [07.12.2021].

[25] Italo Santos. Postgresql out of memory, Feb 2020. Available at https://italux.medium.
com/postgresql-out-of-memory-3fc1105446d [07.12.2021].

100

https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf
https://www.riksbank.se/globalassets/media/rapporter/pov/artiklar/engelska/2020/200618/2020_2-e-krona-design-models-pros-cons-and-trade-offs.pdf
https://www.riksbank.se/globalassets/media/rapporter/pov/artiklar/engelska/2020/200618/2020_2-e-krona-design-models-pros-cons-and-trade-offs.pdf
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology
https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology
https://www.redhat.com/en/blog/postgresql-load-tuning-red-hat-enterprise-linux
https://wiki.postgresql.org/wiki/Performance_Optimization
https://wiki.postgresql.org/wiki/Performance_Optimization
https://pgtune.leopard.in.ua
https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-advanced-server-12
https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-advanced-server-12
https://www.enterprisedb.com/postgres-tutorials/comprehensive-guide-how-tune-database-parameters-and-configuration-postgresql
https://www.enterprisedb.com/postgres-tutorials/comprehensive-guide-how-tune-database-parameters-and-configuration-postgresql
https://www.enterprisedb.com/postgres-tutorials/comprehensive-guide-how-tune-database-parameters-and-configuration-postgresql
https://hal.archives-ouvertes.fr/hal-01334135/file/Reconstructable_software_appliances_with_kameleon.pdf
https://hal.archives-ouvertes.fr/hal-01334135/file/Reconstructable_software_appliances_with_kameleon.pdf
https://jfed.ilabt.imec.be/espec/
https://brandur.org/postgres-connections#concurrency-limits
https://dba.stackexchange.com/a/222815
https://italux.medium.com/postgresql-out-of-memory-3fc1105446d
https://italux.medium.com/postgresql-out-of-memory-3fc1105446d

Bibliography

[26] David Conlin. Row count estimates in postgres, Dec 2018. Available at https://www.
pgmustard.com/blog/2018/12/14/row-count-estimates-in-postgres [27.04.2022].

[27] PostgreSQL. Routine Vacuuming, 2022. Available at https://www.postgresql.org/docs/
current/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY [06.03.2022].

[28] Ankit Shukla. How to solve a bloated postgres database, Apr 2020. Available at
https://www.enterprisedb.com/blog/postgres-pulse-insights-its-still-slow-solving-
bloated-postgres-database [05.05.2022].

[29] PostgreSQL. Routine Vacuuming. Available at https://www.postgresql.org/docs/13/
routine-vacuuming.html#VACUUM-FOR-STATISTICS [27.04.2022].

[30] Laurenz Aube. Hot updates in postgresql for better performance, Sep 2020. Avail-
able at https://www.cybertec-postgresql.com/en/hot-updates-in-postgresql-for-better-
performance/ [27.04.2022].

[31] Jobin Augustine. Postgresql synchronous_commit options and synchronous standby
replication, 2022. Available at https://www.percona.com/blog/2020/08/21/postgresql-
synchronous_commit-options-and-synchronous-standby-replication/ [07.03.2022].

[32] PostgreSQL. Write ahead log, 2022. Available at https://www.postgresql.org/docs/13/
runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT [04.05.2022].

[33] Thomas Munro. Cheat sheet: Configuring streaming postgres synchronous replica-
tion, May 2017. Available at https://www.enterprisedb.com/blog/cheat-sheet-configuring-
streaming-postgres-synchronous-replication [04.05.2022].

[34] Multiple. Postgresqlmailing list, 2022. Available at https://www.postgresql.org/message-
id/VI1PR04MB31338E811E0896D00D85B69B97E19@VI1PR04MB3133.eurprd04.prod.outlook.com
[03.05.2022].

[35] PostgreSQL. Transaction Isolation, 2022. Available at https://www.postgresql.org/docs/
13/transaction-iso.html [09.05.2022].

[36] PostgreSQL. pgbench, 2022. Available at https://www.postgresql.org/docs/13/pgbench.
html#id-1.9.4.10.9.2 [27.04.2022].

[37] PostgreSQL. Number of database connections. Available at https://wiki.postgresql.
org/wiki/Number_Of_Database_Connections#How_to_Find_the_Optimal_Database_Connection_
Pool_Size [04.05.2022].

[38] Dave Page. Tuning max_wal_size in postgresql, Mar 2022. Available at https://www.
enterprisedb.com/blog/tuning-maxwalsize-postgresql [04.05.2022].

[39] Hans-Jürgen Schönig. Postgresql: What is a checkpoint?, Feb 2021. Available at https:
//www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/ [04.05.2022].

[40] PostgreSQL. Write-ahead logging (wal), 2022. Available at https://www.postgresql.org/
docs/13/wal-intro.html [04.05.2022].

[41] The Linux Kernel. Lock statistics, 2022. Available at https://www.kernel.org/doc/html/
latest/locking/lockstat.html#configuration [04.05.2022].

[42] PostgreSQL. The statistics collector, 2022. Available at https://www.postgresql.org/docs/
current/monitoring-stats.html [04.05.2022].

101

https://www.pgmustard.com/blog/2018/12/14/row-count-estimates-in-postgres
https://www.pgmustard.com/blog/2018/12/14/row-count-estimates-in-postgres
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY
https://www.postgresql.org/docs/current/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY
https://www.enterprisedb.com/blog/postgres-pulse-insights-its-still-slow-solving-bloated-postgres-database
https://www.enterprisedb.com/blog/postgres-pulse-insights-its-still-slow-solving-bloated-postgres-database
https://www.postgresql.org/docs/13/routine-vacuuming.html#VACUUM-FOR-STATISTICS
https://www.postgresql.org/docs/13/routine-vacuuming.html#VACUUM-FOR-STATISTICS
https://www.cybertec-postgresql.com/en/hot-updates-in-postgresql-for-better-performance/
https://www.cybertec-postgresql.com/en/hot-updates-in-postgresql-for-better-performance/
https://www.percona.com/blog/2020/08/21/postgresql-synchronous_commit-options-and-synchronous-standby-replication/
https://www.percona.com/blog/2020/08/21/postgresql-synchronous_commit-options-and-synchronous-standby-replication/
https://www.postgresql.org/docs/13/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT
https://www.postgresql.org/docs/13/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT
https://www.enterprisedb.com/blog/cheat-sheet-configuring-streaming-postgres-synchronous-replication
https://www.enterprisedb.com/blog/cheat-sheet-configuring-streaming-postgres-synchronous-replication
https://www.postgresql.org/message-id/VI1PR04MB31338E811E0896D00D85B69B97E19@VI1PR04MB3133.eurprd04.prod.outlook.com
https://www.postgresql.org/message-id/VI1PR04MB31338E811E0896D00D85B69B97E19@VI1PR04MB3133.eurprd04.prod.outlook.com
https://www.postgresql.org/docs/13/transaction-iso.html
https://www.postgresql.org/docs/13/transaction-iso.html
https://www.postgresql.org/docs/13/pgbench.html#id-1.9.4.10.9.2
https://www.postgresql.org/docs/13/pgbench.html#id-1.9.4.10.9.2
https://wiki.postgresql.org/wiki/Number_Of_Database_Connections#How_to_Find_the_Optimal_Database_Connection_Pool_Size
https://wiki.postgresql.org/wiki/Number_Of_Database_Connections#How_to_Find_the_Optimal_Database_Connection_Pool_Size
https://wiki.postgresql.org/wiki/Number_Of_Database_Connections#How_to_Find_the_Optimal_Database_Connection_Pool_Size
https://www.enterprisedb.com/blog/tuning-maxwalsize-postgresql
https://www.enterprisedb.com/blog/tuning-maxwalsize-postgresql
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/
https://www.postgresql.org/docs/13/wal-intro.html
https://www.postgresql.org/docs/13/wal-intro.html
https://www.kernel.org/doc/html/latest/locking/lockstat.html#configuration
https://www.kernel.org/doc/html/latest/locking/lockstat.html#configuration
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html

Bibliography

[43] PostgreSQL. pg_locks, 2022. Available at https://www.postgresql.org/docs/current/view-
pg-locks.html [04.05.2022].

[44] PostgreSQL. Table partitioning, 2022. Available at https://www.postgresql.org/docs/13/
ddl-partitioning.html [01.05.2022].

[45] Rajkumar Raghuwanshi. How to use table partitioning to scale postgresql, Mar
2020. Available at https://www.enterprisedb.com/postgres-tutorials/how-use-table-
partitioning-scale-postgresql [28.04.2022].

[46] PostgreSQL. WITHQueries (Common Table Expressions), 2022. Available at https://www.
postgresql.org/docs/current/queries-with.html [03.05.2022].

[47] PostgreSQL. Controlling the planner with explicit join clauses, 2022. Available at
https://www.postgresql.org/docs/13/explicit-joins.html [03.05.2022].

[48] PostgreSQL. Remote Query Optimization, 2022. Available at https://www.postgresql.org/
docs/13/postgres-fdw.html#id-1.11.7.42.13 [13.05.2022].

[49] PostgreSQL. The Statistics Collector, 2022. Available at https://www.postgresql.org/docs/
current/monitoring-stats.html#WAIT-EVENT-CLIENT-TABLE [11.05.2022].

[50] Wikipedia Community. Zipf’s law, 2022. Available at https://en.wikipedia.org/wiki/
Zipf%27s_law [31.05.2022].

102

https://www.postgresql.org/docs/current/view-pg-locks.html
https://www.postgresql.org/docs/current/view-pg-locks.html
https://www.postgresql.org/docs/13/ddl-partitioning.html
https://www.postgresql.org/docs/13/ddl-partitioning.html
https://www.enterprisedb.com/postgres-tutorials/how-use-table-partitioning-scale-postgresql
https://www.enterprisedb.com/postgres-tutorials/how-use-table-partitioning-scale-postgresql
https://www.postgresql.org/docs/current/queries-with.html
https://www.postgresql.org/docs/current/queries-with.html
https://www.postgresql.org/docs/13/explicit-joins.html
https://www.postgresql.org/docs/13/postgres-fdw.html#id-1.11.7.42.13
https://www.postgresql.org/docs/13/postgres-fdw.html#id-1.11.7.42.13
https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-CLIENT-TABLE
https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-CLIENT-TABLE
https://en.wikipedia.org/wiki/Zipf%27s_law
https://en.wikipedia.org/wiki/Zipf%27s_law

List of Figures

4.1. Experiment Setup: Network system architecture 15
4.2. Experiment Setup: jFed nodes in early experiments 16
4.3. Experiment Setup: jFed nodes in more advanced experiments 17
4.4. Experiment Setup: Directory structure on Grid’5000’s NFS after an experiment 22

5.1. Timeline: Taler TPS achievements during this work 25

6.1. Wallet: Taler TPS when wallet DB gets re-initialized periodically 34
6.2. Wallet: Taler TPS when wallet DB gets re-initialized after each iteration . . . 34
6.3. Wallet: Performance affected by different settings for LOOKAHEAD_SIGN 36
6.4. Exchange-DB: High memory usage with long-lasting connections 38
6.5. Exchange-DB: Verification of memory usage caused by long-lasting connections 39
6.6. Exchange-DB: Connections during the verification of long-lasting connections 39
6.7. Exchange-DB: Memory usage when connections get closed periodically 40
6.8. Exchange-DB: Taler TPS shown when connections get closed periodically . . . 40
6.9. Exchange-DB: CPU usage with many slow queries 42
6.10.Exchange-DB: CPU usage with slow queries ‘gone’ 42
6.11. Exchange-DB: Updates per second on known_coins table 45
6.12. Exchange-DB: asynchronous commit effect on I/O load 47
6.13. Exchange-DB: Serialization errors affecting requests to Nginx 48
6.14. Exchange-DB: Taler TPS affected by serialization errors 48
6.15. Exchange-DB: Slow query occurrences during serialization errors 48
6.16. Exchange-DB: Serialization errors without batch withdraw 50
6.17. Exchange-DB: Serialization errors with less aggressive wallets 50
6.18. Exchange-DB: Serialization errors with batch withdraw enabled 50
6.19. Exchange-DB: TPS in Taler and Postgres affected by combined refresh-reveal

transactions . 51
6.20.Exchange-DB: WAL IO affected by combined refresh-reveal transactions . . . 52
6.21. Exchange-DB: CPU affected by combined refresh-reveal transactions 52
6.22. PostgreSQL: (pgbench) TPS with default configuration 55
6.23. PostgreSQL: (pgbench) TPS with custom configuration 55
6.24.PostgreSQL: I/O stress-test . 57
6.25. PostgreSQL: CPU stress-test . 58
6.26.PostgreSQL: Network stress-test . 58
6.27. PostgreSQL: TPS compared when added an artificial network delay 60
6.28.Exchange-DB: TPS compared when wirewatch was ‘fixed’ 61
6.29.Exchange-DB: Wirewatch withdraw fixed . 62
6.30.Exchange-DB: IO Load on 75k withdrawals per second 62
6.31. Exchange-DB: Wirewatch fix withdraw only without batches 63
6.32. Exchange-DB: Wirewatch withdraw with constant amount (3 coins) 63
6.33. Exchange-DB: Eight wirewatch withdraw with constant amount (128 coins) . 64
6.34.Exchange-DB: One wirewatch withdraw with constant amount (128 coins) . . 64

103

List of Figures

6.35. Exchange-DB: Wirewatch fix, full experiment reaching 23k 65
6.36.Exchange-DB: Wirewatch fix, full experiment reaching 28k 65
6.37. Exchange-DB: Wallet killed due to out of memory 66
6.38.Exchange-DB: Requests reported by Nginx are not the same as in Promtail . . 67
6.39.Exchange-DB: Network bandwidths on Nginx and exchange compared 67
6.40.Exchange-DB: Sharding illustration . 69
6.41. Exchange-DB: Sharding illustration . 69
6.42.Exchange-DB: Sharding network load fix visualized 74

7.1. Wallet: Merchant Zipf distribution . 84
7.2. Wallet: Merchant Zipf distribution verified 84
7.3. Additional: TPS with one account being paid to 85
7.4. Additional: TPS with random accounts being paid to 85
7.5. Additional: TPS with random accounts being paid to (Zipf) 85
7.6. Additional: Auditor DB lag . 86
7.7. Additional: CPU load on the DB server when replicated to the Auditor 87
7.8. Additional: Network load on the DB server when replicated to the Auditor . . 87

104

List of Tables

2.1. TPS of different payment systems . 5

5.1. Notebook RSA performance . 27
5.2. G5K-Dahu RSA performance . 27

6.1. Single-host benchmarks for the Exchange RTGS integration. 31
6.2. PostgreSQL: TPS affected by (I/O) configuration values 54
6.3. Exchange-DB: Partitioning/Sharding scalability of Taler 81

8.1. Future-work: Wallet, time taken to fulfill withdraw and deposit 93

105

Listings

3.1. Grid’5000: Example Resource Specification used in jFed 9
3.2. Grid’5000: Example Experiment Specification used in jFed 9

4.1. Experiment Setup: Grafana datasource update via API 19
4.2. Experiment Setup: Systemd unit files from GNU Taler 21
4.3. Experiment Setup: Systemd unit templates used in experiments 21

6.1. Exchange-DB: SQL function to add constraints to partitions 43
6.2. Exchange-DB: PostgreSQL declarative partitioning example 68
6.3. Exchange-DB: SQL function to create partitioned tables 70
6.4. Exchange-DB: Example showing the new way to create tables 70
6.5. Exchange-DB: Query execution causing high network traffic 75
6.6. Exchange-DB: Query execution plan fixing the high network traffic 76
6.7. Exchange-DB: Query before the usage of materialized indexes 77
6.8. Exchange-DB: Example materialized index 77
6.9. Exchange-DB: Join with materialized indexes 78
6.10.Exchange-DB: SQL function for use with materialized indexes 78
6.11. Exchange-DB: How to analyze SQL functions in PostgreSQL 80
6.12. Exchange-DB: PostgreSQL sharding wait events 80

7.1. Additional: Explain-analyze script (Python) output 88

107

Glossary

API Application Programmable Interface, type of software interface .

Bash Bourne again shell, popular on linux systems .

CLI Command Line Interface, text based frontend for interactice access to applications.

Datasource Termused byGrafana for storage backends providing time series data (see https:
//grafana.com/docs/grafana-cloud/fundamentals/intro-to-datasources/) .

DDoS Distributed Denial of Service, similar to DoS, but the attack originates from many
different sources.

Dead Tuple Tuples (rows) in PostgreSQL which were deleted and are no longer referenced .

DNS Domain Name Service, decentralized naming system used to identify computers reach-
able through the internet .

DoS Denial of Service, cyber-attack to make a system unavailable for its users.

ESpec Experiment Specification, yaml file which describes the experiment steps in jFed.
(see https://jfed.ilabt.imec.be/espec/) .

HOT Heap Only Tuple, term used by PostgreSQL (see: https://github.com/postgres/postgres/
blob/master/src/backend/access/heap/README.HOT) .

Hyper-Threading Implementation by Intel to improve parallelization of computations by
adding a logical CPU core for each physical one .

jFed A java based framework for testbed federation. Used to run experiments in various
tesbeds via a graphical user interface. (see https://jfed.ilabt.imec.be/) .

Kameleon A tool to generate custom operating system images with selected tools and li-
braries installed. (see http://kameleon.imag.fr/index.html) .

Materialized Index Additional ‘translation tables’ we created for better matching of parti-
tions in our queries .

NFS Network File System, distributed file system protocol .

NGI Next Generation Internet (https://www.ngi.eu/).

109

 https://grafana.com/docs/grafana-cloud/fundamentals/intro-to-datasources/
 https://grafana.com/docs/grafana-cloud/fundamentals/intro-to-datasources/
https://jfed.ilabt.imec.be/espec/
https://github.com/postgres/postgres/blob/master/src/backend/access/heap/README.HOT
https://github.com/postgres/postgres/blob/master/src/backend/access/heap/README.HOT
https://jfed.ilabt.imec.be/
http://kameleon.imag.fr/index.html
https://www.ngi.eu/

Glossary

NVME Non Volatile Memory Express, relatively new storage access protocol optimized for
high througput .

Partition Subset of a table which is split up based on a key. Often used to lower number of
serialization errors, or to offload the partitions onto seperate disks to reduce IO load.
(see https://www.postgresql.org/docs/13/ddl-partitioning.html) .

ping A commandline utility to measure round trip times between nodes by sending ICMP
echo reqeusts to the corresponding network hosts .

RSpec Resource Specification, xml files used to describe resources in jFed. (see https://doc.
fed4fire.eu/testbed_owner/rspec.html) .

RTT Round Trip Time, the duration from when a client sends a request to a server until it
receives a response, in our case measured with ping .

Shard Same principle as partition, with the difference that a shard, also known as foreign
table is, located on a different database node. (see https://www.postgresql.org/docs/
13/PostgreSQL-fdw.html) .

systemd System and service management component of Linux operating systems .

UI User Interface, space of interaction between humans and machines.

WAL Write Ahead Log, ensures data integrity of a database .

110

https://www.postgresql.org/docs/13/ddl-partitioning.html
https://doc.fed4fire.eu/testbed_owner/rspec.html
https://doc.fed4fire.eu/testbed_owner/rspec.html
https://www.postgresql.org/docs/13/PostgreSQL-fdw.html
https://www.postgresql.org/docs/13/PostgreSQL-fdw.html

A. Appendix

A.1. Dashboards

The following few sections will explain the custom Grafana dashboard panels used in the
experiments. Most of them are documented in the dashboards themselves, they do not show
this in the plots. This information can thus be found here.

A.1.1. Transactions

Figure A.1.: The current TPS measured in
a fixed interval of 2 minutes.
Without batch-withdraw, it is
calculated from all successful
requests (HTTP status 200)
to /withdraw and /deposit
logged by the nginx proxy.
If batch-withdraw is used,
withdrawals per second are re-
trieved from the exchange metric
taler_exchange_batch_withdraw_num_coins.

Figure A.2.: In case of batch-withdraw, this is
the number of coins withdrawn
per second, measured by the ex-
change processes. Else it is the
number of successful requests to
/withdraw which were logged by
the proxy. All calculated in a fixed
interval of 5 minutes.

Figure A.3.: Number of successful requests to
/deposit which were logged by the
proxy. Calculated in a fixed inter-
val of 5 minutes.

Figure A.4.: The relation deposits to with-
drawals per second in a fixed 5-
minute interval.

111

A. Appendix

Figure A.5.: History of the TPS in Taler. With the same calculation criteria as in Figure A.1. The numbers are calcu-
lated over a fixed interval of 2 minutes.

Figure A.6.: History of the TPS in Taler separated by transaction, this is basically the same as the one above, only
that we can see which transaction made how much TPS.

All the dashboards shown above were created when we had not yet identified rsyslog as a
problem. When we added new metrics to Exchange, we also added new dashboards using
those metrics instead of the ones from Promtail. Nonetheless, the dashboards that are dis-
played are still there in a collapsed row in Grafana. Indeed, they are still needed to inspect
snapshots, for example.

112

A.1. Dashboards

Figure A.7.: The average duration which a wallet needs to complete a whole withdrawal (all coins). Logged by every
hundredth wallet on each node by the bench1 and bench3 implementations.

Figure A.8.: The average duration which a wallet needs to complete a whole deposit (all coins per deposit) in an
iteration. This is also logged by every hundredth wallet on each wallet node.

Figure A.9.: Number of running wallets over time. Important to visualize the relation of wallets to TPS.

Figure A.10.: Number of running exchanges over time. Important to visualize the relation of exchanges to TPS.

113

A. Appendix

Figure A.11.: Number of payments made to the account in question. This only works when bench3 is used and ag-
gregator plus transfer are running, as the data is retrieved from the bank logs, which logs the transfers
when they were aggregated by the aggregator and finally transferred by the transfer process.

There are also further panels in this dashboard, showing the number of processes, number
of nodes, withdraw technique (batch/sequential), number of partitions or the state of the
processes. They do not need further explanation.

A.1.2. Exchange

Figure A.12.: The rate of serialization errors occurring by type of request. This information is taken from the ex-
change’s metrics endpoint.

114

A.1. Dashboards

Figure A.13.: Total number of serialization er-
rors by type of request. This infor-
mation is also taken from the ex-
change’s metrics endpoint. Which
means it will sometimes be reset
when the process restarts.

Figure A.14.: Serialization errors per request in
percent. Calculated based on the
information of the exchange’s met-
rics endpoint and thus also reset
when the processes restart.

Figure A.15.: Number of slow queries per second, calculated from the database’s logs, which are preprocessed by
Promtail. It is taken from log_min_duration_statement based on the filter duration: so make
sure the setting is enabled.

Figure A.16.: Slow queries in detail. Shows how often a query has taken longer than the configured duration in
log_min_duration_statement in the last 5minutes, which is set to 50ms in this case. Only works
if the setting is enabled.

115

A. Appendix

Figure A.17.: Distribution of slow query durations in the displayed time period. The histogram is calculated by Prom-
tail based on the log_min_duration_statement logs of the database. There are also quantile and
max/min average (etc.) panels which are not shown here.

Figure A.18.: Number of signatures created per second by the exchange processes, this is retrieved from the custom
metric endpoint of the exchange processes.

Figure A.19.: Number of signature verified per second by the exchange processes, like above this is also retrieved
from the custom metric endpoint.

116

A.1. Dashboards

Figure A.20.: Number of key exchanges the exchange processes have done per second. Retrieved from the custom
metric endpoint.

A.1.3. Load Statistics

Any information regarding load, i.e. the total number of HTTP requests/s is taken from the
Nginx proxy’s Prometheus exporter. Whichmeans all requests are counted, including failed
or the ones which Prometheus itself creates. The latter one is negligible since this is only
one request every 5s, as configured in the Prometheus scrape settings.

Exchange

Figure A.21.: Number of HTTP requests per second in relation to the CPU load of the exchange node(s).

117

A. Appendix

Figure A.22.: Number of bytes transmitted and received over the network on the exchange nodes, in relation to num-
ber of HTTP requests.

Database

The same panels as for the exchange are also available for the database node, plus the fol-
lowing ones:

Figure A.23.: Number of HTTP requests per second in relation the database’s cache hit rate.

Figure A.24.: Number of HTTP requests per second in relation to number of serialization errors per second.

118

A.1. Dashboards

Figure A.25.: Number of HTTP requests per second in relation to number of slow queries per second.

Figure A.26.: Number of HTTP requests per second in relation to the resulting IO load on the database node(s).

Figure A.27.: Total number of handled HTTP requests by the proxy in relation to the size of the database.

119

A. Appendix

Other

Figure A.28.: The average response time of the proxy for all HTTP requests, taken from its logs, compared to the
number of slow queries per second.

Figure A.29.: The average CPU usage of all exchange proxy nodes compared to the total number of requests.

Figure A.30.: The average CPU usage of all wallet nodes compared to the total number of requests.

A.1.4. Request Statistics

The following described panels are repeated for every important endpoint. The data they
visualize is retrieved from the Nginx proxy’s logs. There are different statistics which are not

120

A.1. Dashboards

further explainedhere available, namely average,minimum,maximum,median, 90th/99th
percentile and the standard deviation of the duration of a request. All of those, plus the
number of successful and failed requests are calculated in an adjustable interval which can
be set in the top left corner of the dashboard. Times are taken from the request_time1 log
entry of Nginx.

Figure A.31.: Request time average for successful requests (HTTP status 200), calculated from the request_time
log entry of the Nginx proxy.

Figure A.32.: Number of requests by status code in the configured interval. Taken from the Nginx logs.

A.1.5. Database

We have imported this dashboard from the library, but in addition we have added some
custom metrics to help us gain further insight into the performance of our database. We
extended the prometheus-postgres-exporter with custom queries and finally added the fol-
lowing custom panels to the dashboard:

1Nginx Request Time: https://nginx.org/en/docs/http/ngx_http_log_module.html#var_request_time

121

https://nginx.org/en/docs/http/ngx_http_log_module.html#var_request_time

A. Appendix

Figure A.33.: Current number of wait events per second by type.

Figure A.34.: Number of wait events per second over time.

Figure A.35.: Rate of live tuples in each table
in the taler-exchange database.

Figure A.36.: Rate of dead tuples in each table
in the taler-exchange database.

122

A.1. Dashboards

Figure A.37.: Number of times the tables in
the exchange database were an-
alyzed by autoanalyze (per sec-
ond).

Figure A.38.: Number of times the tables
in the exchange database were
vacuumed by autovacuum (per
second).

Figure A.39.: Number of updates per second
on each table in the exchange
database, this includes HOT up-
dates.

Figure A.40.: Number of HOT updates per sec-
ond on each table in the ex-
change database.

Figure A.41.: Number of sequential scans on
tables in the exchange database
(per second).

Figure A.42.: Number of index scans on tables
in the exchange database (per
second).

123

A.
Appendix

A.2. Partitioning and Sharding

Foreign Scan on pub l i c . known_coins_1 kc _ 1
(c o s t =100.00. .135 .59 rows=853 width =72) (a c tua l time =1 . 292 . . 16 . 353 rows=3677 loops =1)

Output : k c _ 1 . age_commitment_hash , kc _ 1 . coin_pub , kc _ 1 . denomina t i ons _ s e r i a l
Remote SQL : SELECT denominat ions _ se r i a l , coin_pub , age_commitment_hash FROM pub l i c . known_coins_1

Foreign Scan on pub l i c . known_coins_2 kc _2
(c o s t =100.00. .135 .59 rows=853 width =72) (a c tua l time =0 .815 . . 15 .568 rows=3723 loops =1)

Output : kc _2 . age_commitment_hash , kc _2 . coin_pub , kc _2 . denomina t i ons _ s e r i a l
Remote SQL : SELECT denominat ions _ se r i a l , coin_pub , age_commitment_hash FROM pub l i c . known_coins_2

Foreign Scan on pub l i c . known_coins_3 kc _3
(c o s t =100.00. .135 .59 rows=853 width =72) (a c tua l time =0.948. .15 .970 rows=3586 loops =1)

Output : kc _3 . age_commitment_hash , kc _3 . coin_pub , kc _3 . denomina t i ons _ s e r i a l
Remote SQL : SELECT denominat ions _ se r i a l , coin_pub , age_commitment_hash FROM pub l i c . known_coins_3

Foreign Scan on pub l i c . known_coins_4 kc_4
(co s t =100.00. .135 .59 rows=853 width =72) (a c tua l time =1 . 1 70 . . 16 . 8 15 rows=3615 loops =1)

Output : kc_4 . age_commitment_hash , kc_4 . coin_pub , kc_4 . denomina t i ons _ s e r i a l
Remote SQL : SELECT denominat ions _ se r i a l , coin_pub , age_commitment_hash FROM pub l i c . known_coins_4

Listing A.1: Important part of the execution plan of get_melt before materialized CTEs were used in queries. Its clear that the amount of rows returned by each shard (seen
in actual time=... rows=X) is too high. In combination with other queries and the total load we reached the network capacity almost immediately. The plan
after rewriting the query can be seen in Listing A.2. The explanation can be found Section 6.5

124

A.2.
Partitioning

and
Sharding

Foreign Scan on pub l i c . known_coins_1
(c o s t =100.00. .120.74 rows=4 width =72) (never executed)

Output : known_coins_1 . age_commitment_hash , known_coins_1 . coin_pub , known_coins_1 . denomina t i ons _ s e r i a l
Remote SQL : SELECT **removed** FROM pub l i c . known_coins_1 WHERE ((co in_pub = $1 : : bytea))

Foreign Scan on pub l i c . known_coins_2
(c o s t =100.00. .120.74 rows=4 width =72) (never executed)

Output : known_coins_2 . age_commitment_hash , known_coins_2 . coin_pub , known_coins_2 . denomina t i ons _ s e r i a l
Remote SQL : SELECT **removed** FROM pub l i c . known_coins_2 WHERE ((co in_pub = $1 : : bytea))

Foreign Scan on pub l i c . known_coins_3
(c o s t =100.00. .120.74 rows=4 width =72) (never executed)

Output : known_coins_3 . age_commitment_hash , known_coins_3 . coin_pub , known_coins_3 . denomina t i ons _ s e r i a l
Remote SQL : SELECT **removed** FROM pub l i c . known_coins_3 WHERE ((co in_pub = $1 : : bytea))

Foreign Scan on pub l i c . known_coins_4
(co s t =100.00. .120.74 rows=4 width =72) (a c tua l time =1 . 1 50 . . 1 . 1 50 rows=1 loops =1)

Output : known_coins_4 . age_commitment_hash , known_coins_4 . coin_pub , known_coins_4 . denomina t i ons _ s e r i a l
Remote SQL : SELECT **removed** FROM pub l i c . known_coins_4 WHERE ((co in_pub = $1 : : bytea))

Listing A.2: Important part of the execution plan of get_melt after rewriting queries to use materialized CTEs. Compared to Listing A.1 we can clearly see that only one
partition is hit and that we have to transmitt a lot rows less. (**removed** was added that the plan fits on one page and is a placeholder for the columns selected).

125

A.
Appendix

A.3. Promtail

p i p e l i n e _ s t a g e s :
− match :

s e l e c t o r : ’ { j ob =” proxy ” } ’
s t ages :
− regex :

Regular express ion to e x t r a c t values and l a b e l s f o r prometheus
express ion : ’ .* ur i = / (? P < ep > [a−zA−Z] +) (? : / \w+)? (? : / (? P < act > [a−zA−Z] +)) ? s =(?P< s ta tus > \ d { 3 }) .* ’

− template :
Make j u s t one l a b e l by using go templates syntax out of endpoint (ep) and ac t i on (ac t)
which were ex t r a c t ed by the regex above
source : endpoint
template : ’ { { p r i n t f ”%s−%s ” . ep . ac t | t r imSu f f i x ”−” } } ’

− l a b e l s :
de f ine which ex t r a c t ed / computed values to add as l a b e l s
endpoint :
s t a tu s :

− met r i cs :
de f ine which metr i cs to expose to prometheus
t o t a l _ r e q u e s t s :

p r e f i x : ’ t a l e r _ r e q u e s t s _ ’
type : Counter
d e s c r i p t i on : ” To ta l Requests ”
con f i g :

match _a l l : t rue
ac t i on : inc

Listing A.3: Example of Promtail configuration to calculate and deploy a custommetric namedtaler_requests_total_requests for Prometheus. The values are extracted
from our Nginx logs using regular expressions. While this metric will be deprecated as rsyslog seems to be too slow, others are still required to calculate request
time statistics for example.

126

A.4. PostgreSQL

A.4. PostgreSQL

A.4.1. Configuration Used During pgbench Benchmarks
sha r ed _ bu f f e r s =62GB
e f f e c t i v e _ c a c h e _ s i z e =140GB
huge_pages=on
min _wa l _ s i z e =4GB
max_wal _s i ze =16GB
wa l _ bu f f e r s =1GB
work_mem=2GB
maintenance_work_mem=4GB
che ckpo in t _ c omp l e t i on _ t a r g e t =0.9
checkpo in t _ t imeout = 15min
random_page_cost =1 . 1
b gw r i t e r _ f l u s h _ a f t e r = 2MB
e f f e c t i v e _ i o _ c o n c u r r e n c y = 200
fsync = o f f
synchronous_commit = o f f
f u l l _ p a g e _ w r i t e s = on
max_worker _processes=64
max _pa ra l l e l _worke r s =64
max _pa r a l l e l _wo rk e r s _ p e r _ g a the r =12
max_para l l e l _maintenance _workers =12

Listing A.4: Custom PostgreSQL configuration used on a node in the Dahu cluster during pgbench benchmarks.

A.4.2. Final Configuration

l i s t e n _ a dd r e s s e s = ’* ’

l o g _ d e s t i n a t i o n = sys l og
s y s l o g _ i d en t = ’ t a l e r −database ’

l o g _ e r r o r _ v e r b o s i t y = t e r s e

l og _min _dura t i on _ s t a t ement =50

auto _ exp la in . l og _min _dura t i on = ’50ms ’
au to _ exp la in . l o g _ v e r bo s e = t rue
au to _ exp la in . l o g _ne s t ed _ s t a t emen t s = t rue
au to _ exp la in . l o g _ ana l y z e = t rue
au to _ exp la in . l o g _ b u f f e r s = t rue
au to _ exp la in . l og _wa l = t rue

s h a r e d _ p r e l o a d _ l i b r a r i e s = ’ pg _ s t a t _ s t a t emen t s , auto _expla in ’

j o i n _ c o l l a p s e _ l i m i t =1

log_autovacuum_min_durat ion=0
d e f a u l t _ s t a t i s t i c s _ t a r g e t =300
autovacuum_vacuum_cost _ l imit=400
autovacuum_vacuum_sca le _ fac tor =0.1
autovacuum_vacuum_threshold=1000
autovacuum_analyze _ threshold=50
au tovacuum_ana l y z e _ s ca l e _ f a c t o r =0.1

sha r ed _ bu f f e r s =49163965kB
e f f e c t i v e _ c a c h e _ s i z e =147491895kB

127

A. Appendix

huge_pages=on

min _wa l _ s i z e =20GB
max_wal _s i ze=200GB
wa l _ bu f f e r s =1GB

che ckpo in t _ c omp l e t i on _ t a r g e t =0.9
checkpo in t _ t imeout = 15min
ch e c kp o i n t _ f l u s h _ a f t e r = 2MB
random_page_cost =1 . 1

b gw r i t e r _ f l u s h _ a f t e r = 2MB
ba ckend _ f l u sh _ a f t e r = 2MB

e f f e c t i v e _ i o _ c o n c u r r e n c y = 200
fsync = on
synchronous_commit = o f f

wal_compression = o f f
wal_sync_method = fsync

f u l l _ p a g e _ w r i t e s = on

max_worker _processes=64
max _pa ra l l e l _worke r s =64
max _pa r a l l e l _wo rk e r s _ p e r _ g a the r =10
max_connections=500

max_para l l e l _maintenance _workers =12

max _ l o ck s _ p e r _ t r an sa c t i on =85

work_mem=2GB
maintenance_work_mem=4GB
i d l e _ i n _ t r a n s a c t i o n _ s e s s i o n _ t im e ou t =60000

en a b l e _ p a r t i t i o nw i s e _ j o i n =on
enab l e _ p a r t i t i o nw i s e _ a g g r e g a t e =on

d a t a _ d i r e c t o r y = ’ / tmp/ po s t g r e sq l / 13 /main ’

Listing A.5: The final configuration for PostgreSQL which we used in the Dahu cluster.

128

A.5. Performance Analysis

A.5. Performance Analysis

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 1 0 0 92009 25 18316 0 0 3 318 405 22 26 11 63 0 0
 0 0 0 92009 25 18316 0 0 0 0 261 320 0 0 100 0 0
 0 0 0 92009 25 18316 0 0 0 46616 216 257 0 0 100 0 0
45 0 0 92260 25 17996 0 0 0 0 509124 781029 35 13 52 0 0
44 1 0 92252 25 17998 0 0 0 82192 743920 1140285 51 20 30 0 0
50 0 0 92247 25 18003 0 0 0 65564 740366 1152212 52 18 30 0 0
41 0 0 92243 25 18005 0 0 0 0 736052 1138409 50 20 30 0 0
35 0 0 92240 25 18009 0 0 0 0 734265 1138483 50 20 30 0 0
36 0 0 92238 25 18012 0 0 0 264 741315 1152409 52 19 29 0 0
43 0 0 92236 25 18016 0 0 0 36 740374 1147759 51 20 29 0 0
46 0 0 92231 25 18020 0 0 0 163856 737491 1166498 53 19 28 0 0
47 0 0 92228 25 18023 0 0 0 0 741582 1171814 52 19 28 0 0
43 0 0 92223 25 18027 0 0 0 61584 741537 1168119 53 19 28 0 0
46 0 0 92220 25 18030 0 0 0 36 739695 1167456 53 19 28 0 0
43 0 0 92216 25 18034 0 0 0 228 741992 1150333 52 20 29 0 0
38 0 0 92214 25 18036 0 0 0 147464 740589 1166289 52 19 28 0 0
41 0 0 92209 25 18042 0 0 0 0 737148 1162946 52 19 28 0 0
44 0 0 92207 25 18044 0 0 0 2480 741757 1173128 53 19 28 0 0
39 0 0 92205 25 18049 0 0 0 48 740404 1170644 53 19 28 0 0
52 0 0 92201 25 18051 0 0 0 292 739032 1159037 52 19 28 0 0
42 1 0 92198 25 18054 0 0 0 20072 740101 1165594 52 20 28 0 0
51 0 0 92194 25 18059 0 0 0 45464 738055 1165382 53 19 28 0 0
41 0 0 92190 25 18062 0 0 0 0 742838 1172377 53 19 28 0 0
45 0 0 92185 25 18067 0 0 0 36 740704 1174534 53 19 28 0 0
50 0 0 92182 25 18069 0 0 0 92 741691 1150716 52 19 28 0 0
42 0 0 92177 25 18073 0 0 0 28 740220 1168488 53 18 28 0 0
44 0 0 92174 25 18077 0 0 0 0 738818 1164769 53 19 28 0 0
46 0 0 92172 25 18080 0 0 0 0 740720 1169902 53 19 28 0 0
46 0 0 92166 25 18083 0 0 0 90404 592524 945810 42 15 43 0 0
45 0 0 92161 25 18087 0 0 0 3884 746310 1159898 52 19 28 0 0
49 0 0 92157 25 18090 0 0 0 20 747242 1177750 53 19 28 0 0
36 0 0 92152 25 18094 0 0 0 0 744477 1173832 53 19 28 0 0
46 0 0 92149 25 18098 0 0 0 0 746194 1172700 53 19 28 0 0
39 0 0 92147 26 18101 0 0 0 49768 745651 1177462 54 18 28 0 0
43 0 0 92143 26 18105 0 0 0 212 744968 1161110 53 19 28 0 0
43 0 0 92138 26 18109 0 0 0 0 743223 1176960 54 19 28 0 0
43 0 0 92135 26 18112 0 0 0 81920 745168 1173574 53 19 28 0 0
48 0 0 92132 26 18116 0 0 0 0 743174 1169255 53 19 28 0 0
48 0 0 92129 26 18120 0 0 0 68 592295 933445 42 15 43 0 0
41 0 0 92124 26 18123 0 0 0 76 740354 1162221 52 19 28 0 0
49 0 0 92120 26 18125 0 0 0 0 738456 1158291 53 19 28 0 0
39 0 0 92117 26 18129 0 0 0 147536 740735 1162479 52 20 28 0 0
49 0 0 92113 26 18133 0 0 0 0 737209 1165532 53 20 28 0 0
49 0 0 92111 26 18137 0 0 0 40 741185 1168133 54 19 28 0 0
45 0 0 92110 26 18140 0 0 0 4000 740693 1141945 52 20 28 0 0
42 0 0 92105 26 18144 0 0 0 0 741857 1168830 53 19 28 0 0
43 0 0 92102 26 18147 0 0 0 8 742546 1168867 54 18 28 0 0
43 0 0 92101 26 18150 0 0 0 147456 741941 1166646 53 19 28 0 0
41 1 0 92097 26 18154 0 0 0 64192 740052 1169040 53 19 28 0 0
48 0 0 92094 26 18158 0 0 0 27484 737224 1139511 52 20 28 0 0
47 0 0 92087 26 18162 0 0 0 0 740821 1165037 53 19 28 0 0
54 0 0 92059 26 18164 0 0 0 4 737109 1155098 53 19 27 0 0
38 0 0 92051 26 18170 0 0 0 147456 701847 1075069 55 20 25 0 0
35 0 0 92064 26 18174 0 0 0 44 723153 1125736 54 19 27 0 0
48 0 0 92056 26 18179 0 0 0 53008 734590 1134838 52 19 29 0 0
46 0 0 92053 26 18183 0 0 0 0 741595 1166891 53 19 28 0 0
46 0 0 92049 26 18186 0 0 0 0 740196 1170838 54 19 27 0 0
31 1 0 92045 26 18191 0 0 0 98304 741800 1170076 54 18 28 0 0
44 0 0 92043 26 18194 0 0 0 49188 733352 1173652 53 20 27 0 0
43 0 0 92028 26 18198 0 0 0 116 733522 1151497 53 20 27 0 0
44 0 0 92037 26 18201 0 0 0 0 730364 1137665 53 19 27 0 0
37 0 0 92035 26 18204 0 0 0 0 742348 1164945 53 19 28 0 0
44 0 0 92031 26 18208 0 0 0 0 739273 1165044 53 19 28 0 0
52 0 0 92028 26 18211 0 0 0 147888 739274 1164496 53 19 28 0 0
50 0 0 92024 26 18215 0 0 0 144 739684 1145210 53 19 28 0 0
50 0 0 92020 26 18219 0 0 0 0 742847 1167779 54 18 28 0 0
38 0 0 92016 26 18223 0 0 0 0 738079 1166580 53 19 28 0 0
36 0 0 92013 26 18226 0 0 0 0 742687 1171101 54 18 27 0 0
48 0 0 92009 26 18229 0 0 0 147500 741536 1166846 53 19 28 0 0

129

A. Appendix

40 0 0 92006 26 18233 0 0 0 94600 740746 1147102 52 20 28 0 0
45 0 0 92001 26 18238 0 0 0 0 741119 1163851 53 19 28 0 0
48 0 0 91999 26 18241 0 0 0 0 740995 1167197 53 19 28 0 0
35 0 0 91996 26 18244 0 0 0 0 742235 1165666 53 19 28 0 0
44 1 0 91993 26 18248 0 0 0 49192 741392 1164506 53 19 28 0 0
43 1 0 91990 26 18251 0 0 0 124876 743695 1144639 52 19 29 0 0
48 0 0 91987 26 18255 0 0 0 24864 737759 1159383 52 20 28 0 0
44 0 0 91983 26 18258 0 0 0 0 740224 1164983 53 19 28 0 0
43 0 0 91980 26 18262 0 0 0 0 741742 1168140 54 19 27 0 0
18 0 0 91976 26 18267 0 0 0 36 737449 1162293 53 19 28 0 0
49 0 0 91973 26 18269 0 0 0 147576 741462 1148048 52 20 28 0 0
43 0 0 91969 26 18274 0 0 0 0 742408 1168332 54 19 27 0 0
43 0 0 91966 26 18277 0 0 0 0 738803 1164992 53 19 28 0 0
39 0 0 91963 26 18280 0 0 0 4 737891 1159372 52 19 28 0 0
43 0 0 91962 26 18283 0 0 0 40 741888 1166835 53 19 28 0 0
48 0 0 91958 26 18287 0 0 0 164144 738677 1145900 52 20 28 0 0
46 0 0 91955 26 18291 0 0 0 0 740956 1165789 53 19 28 0 0
44 0 0 91952 26 18295 0 0 0 0 741055 1166460 53 19 28 0 0
44 0 0 91948 26 18299 0 0 0 8 739414 1165698 53 19 28 0 0
46 0 0 91945 26 18301 0 0 0 48 743218 1165277 53 19 28 0 0
36 0 0 91941 26 18305 0 0 0 208 736320 1134425 51 20 29 0 0
47 0 0 91936 26 18309 0 0 0 239096 739799 1159730 52 19 28 0 0
45 0 0 91932 26 18312 0 0 0 0 742477 1167618 53 20 28 0 0
45 0 0 91928 26 18316 0 0 0 0 736442 1159690 52 20 28 0 0
47 0 0 91926 26 18319 0 0 0 76 737145 1157620 52 20 28 0 0
48 0 0 91921 26 18323 0 0 0 64 739999 1146323 52 19 29 0 0
50 0 0 91918 26 18326 0 0 0 197176 739590 1159797 52 19 28 0 0
50 0 0 91915 26 18330 0 0 0 0 740533 1166111 53 19 28 0 0
52 0 0 91911 26 18334 0 0 0 0 739776 1161328 52 20 28 0 0
42 0 0 91907 26 18338 0 0 0 60 590783 929545 41 16 43 0 0
39 0 0 91904 26 18341 0 0 0 4248 744434 1161062 52 19 29 0 0
41 1 0 91900 26 18345 0 0 0 114688 741817 1163511 53 19 28 0 0
14 0 0 91928 26 18349 0 0 0 32768 598242 996868 43 15 42 0 0
 0 0 0 91951 26 18349 0 0 0 0 41914 84357 3 1 96 0 0
 0 0 0 91952 26 18349 0 0 0 36 174 204 0 0 100 0 0
 0 0 0 91954 26 18349 0 0 0 276 7897 13403 0 0 99 0 0
 0 0 0 91954 26 18349 0 0 0 0 1911 3678 0 0 100 0 0
 0 0 0 91954 26 18349 0 0 0 147456 330 351 0 0 100 0 0

Figure A.43.: vmstat output while running pgbench against a database in the Dahu cluster, note that most of these
metrics can be seen in the node-exporter dashboards too.

130

A.6. Exchange Database Schema

A.6. Exchange Database Schema

Figure A.44.: The database schema before we started partitioning the database. This figure was taken from https:
//docs.taler.net. After adding partitions, most of the foreign keys have disappeared, resulting
in a schema without references, but apart from the additional materialized indexes, the schema has
remained the same.

131

https://docs.taler.net
https://docs.taler.net

A. Appendix

A.7. Thesis Assignment

132

	Abstract
	Introduction
	GNU Taler
	Focus

	Related Work
	Payment Systems
	Project Hamilton (MIT)
	Chinese Digital Yuan (e-CNY)
	E-Krona (Riksbank)
	Performance Comparison

	PostgreSQL

	Grid'5000 Introduction
	Grid'5000
	Experimental Overview
	Kameleon
	jFed
	Resource Specification (RSpec)
	Experiment Specification (ESpec)

	Experiment Setup
	Environment
	Structure
	Build

	Analysis Tools
	Data Collection
	Data Analysis

	Network System Architecture
	Selected Nodes

	Experiment Scripting
	Introduction
	Procedure
	Utility Scripts
	Systemd Templates

	Persistence and Recovery
	Persistence
	Recovery

	Performance Timeline
	Performance Results
	Single System Performance Baseline
	Introduction
	Wallet Performance Analysis
	IndexedDB
	CPU Consumption
	Expensive Serialization
	Less Aggressive Behavior
	Final Performance

	Exchange Database
	Connections
	Slow Queries
	Dead Tuples
	Conclusion
	I/O Load
	Serialization Errors
	Number of Database Transactions
	PostgreSQL Benchmark
	Stress-Testing the Database Node
	Exchange Wirewatch
	Conclusion

	Partitioning and Sharding
	Implementation
	Results
	Final Performance

	Additional Results
	Transaction-Load Distribution
	Auditor Inclusion
	Loki Performance
	PostgreSQL Query Analysis

	Future Work
	Exchange
	Exchange Database
	Auditor
	Additional Transactions
	Wallet Clients
	Merchant

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Listings
	Glossary

	Appendix
	Dashboards
	Transactions
	Exchange
	Load Statistics
	Request Statistics
	Database

	Partitioning and Sharding
	Promtail
	PostgreSQL
	Configuration Used During pgbench Benchmarks
	Final Configuration

	Performance Analysis
	Exchange Database Schema
	Thesis Assignment

